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Chapter Synopsis

Chapter  1 places  the  emergence  of  product  modularity  as  a  mechanism  for 
combating the organisational problem of decreasing returns to scale in a historical 
and theoretical context.    

In  Chapter  2 we  review  the  literature  of  modularity  as  a  design  principle  for 
complex product development and synthesise its alleged organisational benefits into 
a  conceptual  model,  from which  we draw hypotheses  for  subsequent  empirical 
testing.  

Chapter 3 describes the research methodology. 

Chapter 4 introduces the empirical setting of the study: the FreeBSD Project. 

Chapter 5  presents the results of testing the effect of modularity on coordination 
costs in FreeBSD (hypothesis 1). 

Chapter 6 presents the results of testing the effect of modularity on group size and, 
reversely, the effect of increasing group size on modularity (hypotheses 2 and H2R 
respectively).

Chapter  7  presents  the  results  of  testing  the  effect  of  modularity  on  labour 
productivity (hypothesis 3).

Chapter 8 presents the results of testing the effect of increasing group size on labour 
productivity (hypothesis 4).

Chapter 9 examines the transformation of FreeBSD's governance structure to which 
the project resorted in order to more effectively accommodate itself to expanding 
scale.

Chapter 10  sums up the empirical  findings  and reflects  on the role  of  modular 
product  design  as  a  governance  mechanism  in  the  development  of  Free/Open 

xiii



Source Software (FOSS) projects. 

The epilogue comments on the effect that increasing organisational size exerts upon 
a group's ability to self-organise without centralised authority.
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CHAPTER 1: INCREASING AND DECREASING 
RETURNS TO SCALE

INTRODUCTION
In recent years, modularity – a design principle implemented by breaking down a 
product  into  independent  components,  which  can  be  developed  autonomously 
without undercutting the functionality of the product as a whole – has emerged as a 
powerful  solution  to  a  classic  organisational  problem:  the  adverse  effects  of 
increasing scale on productivity known as decreasing returns to scale (Boehm 1981; 
Brooks 1995). Before we review the literature of modularity, in this chapter we will  
try to put the emergence of modularity into a historical and theoretical perspective 
by exploring the notion of  increasing and decreasing returns to scale. 

INCREASING RETURNS TO SCALE: THE ADVANTAGES  
OF BIGNESS 

Arguably, no variable in organisation theory has garnered more attention than size 
(Daft & Lewin 1993, p. iii). The fascination that the size factor has exerted – and 
still exerts – for social scientists becomes easily understood once one considers the 
significance for economic growth that has been historically attributed to increasing 
returns  to  size.  No  illustration  of  the  importance  of  increasing  returns  to  the 
division  of  labour  is  better  known  than  the  oft-quoted  passage  from  the  first 
chapter  of  The  Wealth  of  Nations (1776)  where  Adam  Smith,  writing  at  the 
threshold  of  the  industrial  age,  points  out  that  while  a  single  worker,  when 
working  alone,  can  produce  no  more  than  twenty  pins  in  a  day,  individual 
productivity rises up to four thousand eight hundred pins when the process is split  
up between ten workers, provided that each one of them specialises in a single task. 
The  first  systematic  treatment  of  increasing  returns  to  large-scale  production, 
however,  comes  about  sixty  years  later  by  which  time  the  process  of 
industrialisation  was  in  full  swing.1 Charles  Babbage,  a  computer  pioneer  and 

1 In tracing the genealogy of ideas that fed the thrust toward bigness, our treatment overlaps with  
that of Rosenberg (1992, 1994). 
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inventor driven by the vision of 'the calculating engine', which was to occupy his 
lifelong  labours,  became  thoroughly  acquainted  with  contemporaneous 
developments in the industrial application of machinery. His studies culminated in 
a book entitled  On the Economy of Machinery and Manufactures (1832), which, 
besides  its  illuminating  descriptions  of  scores  of  industrial  processes,  offers  a 
pioneering  economic  analysis  of  the factory.  In  the  chapter  on 'the division of  
labour',  Babbage reminded his readers  that  to the three circumstances to which 
Adam Smith attributed the increased productivity springing from the division of 
labour – the increased dexterity of the individual worker, the saving of time that 
would be otherwise lost by switching from one task to another, and mechanical  
inventions – there must be added a fourth one:

That the master manufacturer, by dividing the work to be 
executed into different processes, each requiring different 
degrees  of  skill  and  force,  can  purchase  exactly  that 
precise  quantity  of  both  which  is  necessary  for  each 
process;  whereas,  if  the whole  work were executed by 
one workman, that person must possess sufficient skill to 
perform  the  most  difficult,  and  sufficient  strength  to 
execute the most laborious, of the operations into which 
the art is divided (Babbage 2009, pp.137-138).

According to Babbage, the chief advantage of the extension of the division of 
labour  is  that  it  permits  an  'unbundling'  of  labour  skills:  by  decomposing  the 
production process into distinct tasks, and decoupling the tasks requiring skilled 
labour from those that do not, the former can be assigned to skilled workers and the 
latter to unskilled ones. Consequently, as the employer no longer needs to pay for 
labour corresponding to higher skill levels than those absolutely necessary for each 
stage  of  the  process,  production  costs  can  be  dramatically  reduced.  Equally 
important, the unbundling of skills can be carried very far: tasks into which the 
production process has been decomposed can be further decomposed into sub-tasks 
until there is no task in the production process that is complex enough for unskilled 
workers to perform. Following this line of reasoning, Babbage concluded that the 
drive  to  reduce  production  costs  through  such  an  unbundling  of  skills  leads 
necessarily  to  the  establishment  of  large  factories.  Babbage's  treatment  of  the 
subject had a profound influence on two of the most prominent, perhaps  the two 
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most prominent, economists of the 19th century, John Stuart Mill and Karl Marx. 
Drawing on the economic advantages of bigness that Babbage identified, Mill opens 
chapter  9,  'Of  Production on a  Large,  and Production on a  Small  Scale',  of  his 
highly influential Principles of Political Economy (1848) by asserting 'that there are 
many cases in which production is made much more effective by being conducted 
on a large scale' (Mill 1965, p. 131). In particular, the benefit of expanding the scale  
of production is obvious  

when  the  nature  of  the  employment  allows,  and  the 
extent of the possible market encourages, a considerable 
division of labour. The larger the enterprise, the 'farther' 
the division of labour may be carried. This is one of the 
principal  causes  of  large  manufactories  (Mill  1965,  p. 
131).

Following  Babbage,  Mill  enumerates  economies  in  the  use  of  machinery,  in 
operating  costs  like  lighting,  in  management,  and  the  'economy occasioned  by 
limiting the employment of skilled agency to cases where skill is required'. But if 
Mill was the first economist to call attention to the tendency for firms to expand in 
size due to economies associated with large-scale production, it was Marx who first  
stressed that the thrust toward large scale is irreversible and unstoppable. Because 
of the economies attendant upon increasing the scale of production, Marx was led 
to the conclusion that small firms cannot compete against larger ones and so, on a  
long enough timeline, gigantic firms are bound to dominate the market. As large-
scale firms can produce the same products at lower cost, they can sell them at a 
lower price, thereby outselling their smaller-scale competitors in the market. Cut-
throat price competition results in the absorption of the smaller firms by the bigger 
ones. In Marx's words: 

The battle of competition is fought by the cheapening of 
commodities. The cheapness of commodities depends, all 
other  circumstances  remaining  the  same, on  the 
productivity of labour, and this depends in turn on the 
scale of production. Therefore, the large capitals beat the 
smaller (Marx 1990, p. 777). 

3



In hindsight, it seems fair to say that Marx's predictions have not materialised. 
Small firms have not been eclipsed by larger – and because larger, more productive 
– ones. Marx failed to anticipate the disruptive effect of technological innovation, 
namely the changes in the organisation of the production process that the diffusion 
of the telephone and the electric motor were to catalyse from the end of the 19 th 

century onwards. While the defective system of communication that antedated the 
telephone  confined  efficient  administration  to  a  single  manufacturing  site,  and 
steam power – by reason of being more efficiently utilised in large units than small 
ones – fostered the tendency toward large industrial plants, the introduction of the 
telephone  and  the  electric  motor  worked  a  transformation  within  the  factory, 
imparting a great  measure of  flexibility to its  design.  As the engineers  were no 
longer  forced  by  the  requirements  of  large  steam  engines  to  crowd  as  many 
productive units as possible on the same shaft, there was no point in centralising 
manufacturing.  The displacement of steam power by electricity gave small-scale 
industry – as well as domestic production – a new lease of life, making it possible 
for small units to compete on even terms with larger ones (Mumford 1963, pp. 224-
227). 

Doubtlessly, the use of the telephone and electric motors gave small firms the 
requisite instruments to reach their full potential, enabling them to build up the 
flexibility on which their real strength actually rests. Although large firms might be 
well-suited to a stable and routine environment, their mode of operating renders 
them unsuitable for environments  undergoing rapid changes.  Operating through 
layers of management with rigid rules, they cannot match the flexibility offered by 
small  firms,  which  is  highly  advantageous  to  experimentation  in  industries 
galvanised by disruptive change. As Rosenberg (1992) puts it:     

Many experiments are easier and less costly to conduct 
on a small scale. It is inherently difficult to experiment 
and to introduce numerous small changes, and to do so 
frequently,  in  a  large  hierarchical  organizational 
structure  where  permissions  and  approval  are  required 
from a remote central authority.

The  history  of  industries  that  have  been  recently  undergoing  radical 
technological change – such as the electronics and computer industry – attests to 
the fact that small firms have a comparative advantage in developing and launching 
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new technology products. Large firms are not receptive to the kind of risk-taking 
that is characteristic of smaller and leaner firms. In fact, risk aversion with respect 
to new technology is endemic to the structure of incentives in large organisations. 
By contrast, small firms,  by cutting out the inevitable red-tape of even efficient 
large  organisations,  are  well-positioned  to  experiment  with  respect  both  to 
technology and to form of organisation (Rosenberg 1992). 

However, this flexibility would have been extremely limited in scope had not 
been  for  the  possibility  to  draw  upon  a  decentralised  network  of  external 
capabilities – a practice nowadays known as outsourcing. A familiar path followed 
by small firms is that of specialisation. To increase their competitiveness, they opt 
to specialise in those activities at which they excel while outsourcing the rest to 
other  firms.  A  good  example  of  such  external  economies –  a  concept  Alfred 
Marshall (1891, p. 325) coined to describe those economies that 'do not depend on 
the size of individual factories' but are 'dependent on the general development of 
the industry' – is the microcomputer industry. As established firms of the likes of  
IBM  initially  failed  to  appreciate  the  market  potential  for  small  computers  for 
individual end-users, the early stages in the history of the microcomputer industry 
(better known today as the personal computer industry) are largely the story of 
enterprising hobbyists who fed on the capabilities of a large network of external 
sources to develop their own computers (Anderson 1984; Gray 1984; Hauben 1991; 
Stern  1981).  Lacking  the  technical  capabilities  for  producing  in-house  all  the 
components they needed to build a personal computer, hobbyists banded together 
in user-groups  (such as  the legendary  Homebrew Computer  Club out  of  which 
emerged the distinctive culture of high-tech entrepreneurship that Silicon Valley is 
acclaimed for) and resorted to specialising in some components while outsourcing 
the rest. Had these hobbyists – and the start-ups they founded – not drawn upon a  
globally distributed network of capabilities, it would have been impossible to give 
flesh to their vision of 'computers for the masses'.2 As Langlois (1992, p. 38) says, 
'the rapid growth and development of the microcomputer industry is largely a story 
of  external economies. It is a story of the development of capabilities within the 
context  of  a  decentralized market  rather  than within large vertically integrated 
firms'. By allowing small firms to benefit from the economies in specialised skills 

2 The Apple II (1982) illustrates this well: its stuffed boards were developed by GTC; its floppy-
drives  from Shugart  and Alps;  its  hard-drives  from Seagate;  its  RAM and ROM chips  from 
Mostek, Synertek and NEC; its monitor from Sanyo. The only components that Apple developed 
in-house were floppy and hard-drive controllers, the power-supply and the case. See Langlois 
(1992, pp. 14-15, footnote 44). 
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and machinery that other firms have developed, external economies remove the 
necessity of increasing in size. 

Profound changes in the structure of the global economy have also tended to 
favour the persistence of small firms. To a large extent, the persistence of the small 
firm is owed to the rapid expansion of the service industry since 1970, that is, to the 
shift of  the  labour  force  'from  manufacturing,  with  its  relatively  large 
establishments, to the service industry, with its small ones'  (Granovetter 1984, p. 
327).  Indicative of  the growth of  services  is  that  the proportion of  U.S.  private 
sector  workers  in  services  in  1982  rose  up  to  25.7%,  overtaking  that  in 
manufacturing (25.5%). Considering that 'economies of scale in production show up 
for relatively small plants and that profit maximization does not generally dictate 
very large ones' (Granovetter 1984, p. 331), the declining share of employment in 
manufacturing – that is to say, the rising predominance of the service industry in 
the economy – implies that workers do not find themselves in increasingly larger 
organisational structures. 

DECREASING RETURNS TO SCALE
Decreasing returns to scale due to coordination costs 
Although Victorian economists commonly believed there is no limit to the division 
of labour within the firm, attempts to enlarge the scale of production were often 
checked by the tendency for coordination costs to rise. Not all writers of the 19 th 

century  were  oblivious  to  this  phenomenon,  as  shown,  for  example,  by  Amasa 
Walker's  writings,  who  argued  that  the  efficiency  of  supervision  cannot  be 
maintained beyond a definite scale of operations, setting thus a limit to firm size:

When the concentration of capital has become so great 
that interested personal supervision cannot be brought to 
bear  upon  each  department,  and  upon  the  whole 
enterprise,  with sufficient  intensity to  insure efficiency 
and fidelity on the part of those employed, and harmony 
in the general conduct of the business. Beyond this point, 
the advantages derived from the power of concentration 
are neutralized (Walker 1866, chapter 5).    

It was though not until the 1930s that economic theory turned to this question, 
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drawing attention to the limits  to firm growth posed by diminishing returns to 
management. The contributions of Nicholas Kaldor (1934), Austin Robinson (1934) 
and Ronald Coase (1937) may be considered emblematic of this literature stream. 
According to Kaldor, the management function consists of two tasks: supervision 
and coordination. 'The essential difference between' them 'is that in the case of the 
former, the division of labour works smoothly'  (Kaldor 1934, p. 69, footnote 1): 
while there are no limits as regards the number of individuals among whom the 
task  of  supervision  can be  split  up,  the  nature  of  the  coordinators'  job  on  the 
contrary implies that they grasp the totality of productive processes. Coordinating 
ability,  for the simple reason that humans are limited in their ability to process 
information, does not scale-up:   

          
You cannot increase the supply of co-ordinating ability 
available  to  an  enterprise  alongside  an  increase  in  the 
supply  of  other  factors,  as  it  is  the  essence  of  co-
ordination that every single decision should be made on a 
comparison with all the other decisions already made or 
likely to be made (Kaldor 1934, p. 68). 

A  production  system  cannot  be  enlarged  indefinitely  without  incurring 
increased costs of coordination and control required for the management of larger 
units. Consequently, these costs determine optimum firm size – that is, the limit to 
firm size. As Robinson (1934, p. 248) puts it:

For  every  type  of  product  there  is  in  a  given  state  of 
technique  some  size  at  which  the  technical  and  other 
economies of larger scale production are outweighed by 
the  increasing  costs  of  the  co-ordination  of  the  larger 
unit,  or  by  a  reduced  efficiency  of  control  due  to  the 
growth of the unit to be co-ordinated.

Enlarging the scale of production brings about 'diseconomies of co-ordination' 
(Robinson 1934, p. 252), which, in the final analysis, arise 'from the limitations of 
human abilities, from the fact that they can only think and organize at a certain 
pace, that they can only crowd so much work into twenty-four hours' (Robinson 
1934, p. 247, footnote 1). In consideration of the limitations to the scale that can be 
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managed,  'an  industrial  body will  be  profitably  enlarged  only  up  to  that  point 
where marginal productivity is equal to average productivity' (Robinson 1934, p. 
253).

It was in the context of this discussion that Coase advanced his theory of the 
firm,  according  to  which  firms  exist  because  they  provide  an  institutional  
environment within which transactions corresponding to certain tasks or stages of 
production  can  be  coordinated  more  efficiently  than  in  the  open  market.  By 
implication, a firm shall grow up to the point that the cost of organising internally 
an additional activity exceeds the cost of carrying out this activity in the market or  
in another firm. To the question 'why is not all production carried on by one big 
firm?', Coase (1937, pp. 394-395) replied:

As a firm gets larger, there may be decreasing returns to 
the entrepreneur function, that is, the costs of organising 
additional  transactions  within  the  firm  may  rise. 
Naturally,  a  point  must  be reached where  the costs  of 
organising an extra transaction within the firm are equal 
to the costs involved in carrying out the transaction in 
the open market, or, to the costs of organising by another 
entrepreneur. Secondly, it may be that as the transactions 
which are  organised increase,  the  entrepreneur fails  to 
place the factors of production in the uses where their 
value is greatest, that is, fails to make the best use of the 
factors of production.

Coase's  transaction-cost  theory  explicitly  acknowledges  the  primacy of  costs 
commonly  subsumed  under  the  heading  of  management  or  coordination  in 
determining  the  boundaries  of  the  firm.  However,  a  full  consideration  of  the 
implications of this analysis had to await thirty years until Oliver Williamson, a 
student of Coase, expanded on the 'organisational failures' caused by increasing firm 
size.  The  first  building  block  of  his  theory  of  institutional  economics,  which 
synthesises insights drawn from organisation theory and social psychology, was laid 
in 1967 when Williamson dissected the organisational  implications  of  'bounded 
rationality',  that  is,  of  'human  behaviour  that  is  intendedly  rational  but  only 
limitedly so' (Simon 1957). Given that bounded rationality results in finite spans of 
control,  expanding  the scale  of  operations  implies  that  more  hierarchical  layers 
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have to be added: that is, the larger the scale of operations of a firm, the taller its 
hierarchy (Williamson 1985, p.  134).3 The taller  a  hierarchy,  in turn,  the more 
prone it is to serious communication distortions, impairing thus the quality of the 
data  transmitted  upward  as  well  as  the  quality  of  the  instructions  supplied 
downward, a phenomenon Williamson (1967, p. 135) calls 'control loss':

For any given span of control...an irreducible minimum 
degree  of  control  loss  results  from  the  simple  serial 
reproduction  distortion  that  occurs  in  communicating 
across successive hierarchical levels.

In the next years Williamson further elaborated on the factors responsible for 
limits to firm size. Besides communication distortions exacerbated by extensions of 
the hierarchical chain, he stressed the demotivating effects of working inside large 
firms.  Bigness  has  negative  'atmospheric  consequences':  workers'  feeling  of 
alienation tends to grow in proportion with firm size. In parallel, as increasing firm 
size leads to taller hierarchies, 'leaders are less subject to control by lower-level 
participants' (Williamson 1975, p. 127). The larger a firm grows the more insulated 
and therefore the more opportunistic its managers tend to become: 'Efforts to tilt 
the organization, often through greater hands-on management, commonly result', 
as managers, perceiving themselves to be a separate group with its own goals, usurp 
the resources of the firm to further their personal agendas (Williamson 1985, p. 
149).  In  sum,  increasing  firm size  sets  a  limit  to  the  incentives  that  the  wage 
relation (i.e.  the contractual  employment  relation)  permits  to  be effectuated:  as 
relative to small firms, the cost of tying rewards closely to individual performance is 
prohibitive for large firms. By emphasising the effect of increasing firm size on the 
behaviour of  individuals,  Williamson's  work  highlights  the  importance  of 
considering reduced individual motivation, in addition to coordination problems, as 
a cause of decreasing returns to scale.4  

3 'If any one manager can deal directly with only a limited number of subordinates, then increasing  
firm size necessarily entails adding hierarchical levels' (Williamson 1985, p. 134).

4 For an extensive review of Williamson's work as well as for an empirical test of his conclusions in  
a sample of 784 large US manufacturing firms, see Canback et al. (2006). 
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Decreasing  returns  to  scale  due  to  reduced  individual  
motivation 

Social psychologists have long been interested in the effect of working in a group 
on  individual  motivation  and  performance.  The  first  experiment  that  found  a 
negative effect of increasing group size on group performance was conducted by 
Ringelmann in the 1880s. Ringelmann observed that when groups of men pulled on 
a rope, tug-of-war fashion, their collective performance was inferior to the sum of 
their individual performances.5 However,  it  was not until 1974 that his findings 
were replicated by Ingham et al. (1974), who ascertained that group performance 
indeed declined when more than one person pulled on the rope. More importantly,  
Ingham  et  al.  (1974)  attempted  to  separate  the  effect  of  coordination  from 
motivation loss by asking subjects to pull in pseudo-groups, where they believed 
there were from one to five other members. Although they actually pulled alone, 
their  (individual)  performance  was  lower  than when they believed they pulled 
unassisted by others, showing thus that the negative effect on group performance is 
due to reduced individual motivation, as distinct from coordination loss. Latané et 
al. (1979) arrived at the same conclusion in their highly influential 1979 experiment 
for which they asked college students to shout and clap as loudly as they could 
individually and in groups. Blindfolded and wearing headphones to mask the noise, 
students shouted and clapped in both real groups and pseudo-groups, where they 
believed they were part of a group but were on their own: individual performance 
dropped  in  both  cases,  demonstrating  that  reduced  individual  motivation  was 
responsible for the decrease of group performance. For this  demotivating effect, 
Latané et  al.  (1979)  coined the term  social  loafing,  which, as  later studies  have 
shown, generalises across tasks and S populations.6 

However,  this  is  not  to  say that  social  loafing is  an inevitable  side-effect  of 
collective  work.  The  tendency  for  people  to  expend  less  effort  when  working 
collectively  is  reduced or  eliminated  when individual  outputs  can be evaluated 
collectively; when working on tasks perceived as meaningful and engaging; when a 
group-level comparison standard exists; when working with friends or in groups 
one highly values; and when inputs to collective outcome are (or are perceived as 
being) indispensable (Karau & Williams 1993). In large groups, in particular, social 
loafing  depends  first  and  foremost  on  whether  or  not  individual  efforts  are 

5 The experiment was first reported in 1927 by Ringelmann's teacher, Walther Moede (1927). For a 
more extensive discussion of Ringelmann's experiment, see Kravitz and Martin (1986).

6 For a review of the relevant literature, see Karau and Williams (1993).
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dispensable  (or are perceived as  such) (Kerr & Brunn 1983).  This  is  the central 
thesis of Mancur Olsen's (2002) hugely influential treatment of collective action by 
voluntary  associations.  Drawing  on  public  goods  theory,  Olsen's  study  of  the 
conditions under which groups of individuals act in their collective interest led to 
conclusions diametrically opposed to group theorists who claimed that groups are 
mobilised by the consciousness of the collective goal to be attained. According to 
Olsen, while an individual is likely to contribute to a small group as he receives a 
large  fraction  of  the  total  benefit  or  because  'his  contribution  or  lack  of 
contribution to the group objective [has] a noticeable effect on the costs or benefits 
of others in the group', 

 
in  a  large  group  in  which  no  single  individual's 
contribution makes a perceptible difference to the group 
as a whole...it is certain that a collective good will not be 
provided  unless  there  is  coercion  or  some  outside 
inducements  that  will  lead  the  members  of  the  large 
group to act in their common interest (Olsen 2002, p. 44). 

Since in a large group individual contributions do not have a discernible effect 
on the provision of the good and if the good is provided, being a collective good, 
nobody can be excluded from consuming it, Olsen concluded that when the latent 
group is composed of a large number of individuals, it would be rational for each of 
them to withhold their contribution:

unless the number of individuals in a group is quite small, 
or unless there is coercion or some other special device to 
make individuals act in their common interest,  rational,  
self-interested individuals  will  not  act  to  achieve  their  
common or group interests (Olsen 2002, pp. 1-2).

Simply put, individuals tend not to act in large groups because, on the one hand, 
they perceive their individual contribution to have no significant effect on whether 
or not  the good shall  be provided, while,  on the other,  they know that  if  it  is  
provided,  they cannot  be excluded from using  it.  This  non-act  has  come to be 
known as  free-riding. Although Olsen's 'size principle' has been heavily criticised 
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on several grounds,7 a substantial corpus of research supports the view that free-
riding is caused by reduced identifiability and evaluation and hence is endemic in 
(large) groups where collective output is the only observable indicator of inputs.8

DOES  PRODUCT  MODULARITY  MITIGATE  THE  
ADVERSE EFFECTS OF INCREASING SCALE?

Despite the growing realisation that expanding the scale of operations beyond a 
certain point may decrease productivity through the overhead costs it entails, the 
fixation on expanding the scale of production has not waned. Characteristically, in 
his study of the rising industrial concentration in the household laundry equipment 
industry between 1947 and 1972, Scherer (1979, p. 195) remarked that 'there are 
unusually compelling economies of scale connected with both large annual volumes 
and large cumulative outputs of any given washing machine model', even though 
his  own review of empirical studies  of optimum plant size concluded that scale 
economies are exhausted beyond a relatively small size (Scherer 1970, pp. 72-103). 
On  the  same  wavelength,  in  his  study  of  448  manufacturing  industries,  Miller 
(1978, p. 486) found 'compelling evidence of large economies of scale at the firm 
level for a major portion of American industry'. As in the vast majority of industries 
the productivity of the four largest firms was significantly greater than that of all 
other  firms,  Miller  concluded  that  enlarging  the  scale  of  production  (by 
constructing larger plants) results in higher productivity.9 

Considering  that  attempts  to  boost  productivity  by  enlarging  the  scale  of 
operations are still  in full swing, it  should come as little surprise that there is  a  
growing interest in how the adverse effects of increasing scale can be mitigated. 
The most promising perhaps of all technical solutions considered in this connection 

7 For  example,  Chamberlin's  (1974)  critique  is  based  on  the  role  of  the  non-rivalness  of 
consumption; Coleman's (1990) is based on the role of social networks; Gibson's (1991) on the 
role of social incentives such as fun; Goldstone's (1994) on tipping effects; Lohmann's (1994) on 
informational cascades; and Oliver and Marwell's (1988) on the jointness of supply.

8 For  an  economic  treatment,  see  for  example  Holmstrom  (1982).  For  a  social  psychology 
experiment, see Williams et al. (1981). 

9 Miller's (1978) results were as follows: (a) in 409 out of 448 industries, 'on average the largest 
firms had an output per plant employee that was 39% greater than that for all other firms in the  
industry'; (b) in 400 out of 448 industries, 'on average the four largest firms had a value added per 
worker that was 37% higher than the remainder of the industry';  (c) in 431 out of 448 industries,  
'on average the top four firms were able to handle 43% more material inputs per employee than 
the remainder of the industry'; and (d) in 369 out of 448 industries, 'on average, the four largest 
firms had profits per employee that were 57% greater than those for the remainder of the industry' 
(pp. 473-477).
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is  modularity: a design principle for managing complexity and reducing the need 
for  coordination,  implemented  by  breaking  down  a  product  into  independent 
components,  which  can  be  developed  autonomously  without  undercutting  the 
functionality  of  the  product  as  a  whole.  Stated  in  economic  terms,  product 
modularity is  'one very powerful  technique...to reduce diseconomies of scale by 
reducing scale' (Boehm 1981, p. 194).10 Specifically, it mitigates the adverse effects 
of increasing scale by reducing the need for communication and active coordination 
across the development of distinct product components. By attenuating the need for 
central  coordination,  modularity  is  held  to  impart  scalability  to  the  production 
system. This dissertation sets out to put this argument to the test by studying a 
phenomenon which combines  both scale  and modularity:  free  and open source 
software (FOSS) development. Its leading question is this: Does modularity mitigate  
the adverse effects of increasing scale in FOSS development?  

In the next  chapter,  we delve more deeply into the literature of modularity, 
summing up its claimed benefits in research hypotheses conducive for empirical 
study.     

10 As  a  side  note,  in  the  statement  quoted  Boehm seems  to  conflate  scale  diseconomies  with  
decreasing returns to scale. 
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CHAPTER 2: LITERATURE REVIEW

THE  PRODUCTIVITY  PARADOX  IN  SOFTWARE  
DEVELOPMENT 

How  to  speed  up  the  development  of  large  projects  has  long  been  a  pressing 
question  in  the  software  industry.  Past  attempts  to  accelerate  the  rate  of 
development by assigning more programmers to work on the project have often 
met with failure. Of them, the experience of IBM in the development of the OS/360 
in the 1960s stands out for the legendary status it enjoys among software engineers. 
Responsible  administratively  for  that  programming  effort  was  Frederick  Brooks 
who, facing a project behind schedule, resolved to feed it with more programmers. 
The problem presented itself  to Brooks in the shape of  a  dilemma well  known 
among software developers: 

For efficiency and conceptual integrity, one prefers a few 
good minds doing design and construction. Yet for large 
systems one wants a way to bring considerable manpower 
to  bear,  so  that  the  product  can  make  a  timely 
appearance.  How  can  these  two  needs  be  reconciled? 
(Brooks 1995, p. 31). 

However,  rather  than  stepping  up  development,  the  additional  inflow  of 
programmers further derailed the project's schedule. Labour productivity decreased 
while the task of coordinating work flows became increasingly more difficult as 
more programmers joined the project. It did not take Brooks long to figure out why: 
Adding more developers to a project entails considerable organisational costs. First, 
freshly hired project members are not fully productive. They need to be trained by 
old developers, who, in taking on the mentor's role, channel part of their time away 
from their primary job responsibilities. Hence,  not only are new developers not 
fully productive when they join the project, but in consequence of the training on 
the job given them by veterans, the productivity of the old-timers declines as well. 
Second, a communication overhead is  incurred by adding more developers.  The 
need  to  train  and  communicate  with  new  members  translates  into  additional 
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communication paths,  thus  increasing  the  complexity  of  communication  in  the 
project.  As  more  developers  join  the  project,  the  portion  of  the  working  day 
consumed in  communication grows at the expense of the time devoted to product 
development.  Consequently,  the production process  manifests  decreasing returns 
on scale: productivity declines. In the light of these constraints, Brooks formulated 
his  famous  dictum:  'adding  manpower to  a  late  software project  makes  it  later'  
(Brooks 1995, p. 25). Now commonly known as Brooks' Law, the adverse effect of 
increasing  size  on group performance  is  considered a  ruling  maxim of  software 
engineering. 

The root cause of the problem, as Brooks discovered, is that as new nodes are 
added to the communication network,  the number of  connections among them 
rises exponentially. This inevitably runs up against a limit beyond which the cost of  
adding one more node outweighs the expected benefit. Spreading out the work over 
too  many  participants  could  be  counter-productive,  short-circuiting 
communication channels  and overloading  a  project's  capacity  to  coordinate  the 
contributions  of  participants.  In the end,  Brooks  resorted to  circumventing  this 
division of labour problem by means of 'surgical teams' where 'one does the cutting 
and the  others  give  him every  support  that  will  enhance  his  effectiveness  and 
productivity' (Brooks 1995, p.32). The separation of high-level architectural design 
from the low-level task of code implementation, characteristic of this organisational 
configuration, aims at checking the communication overhead caused by enlarging 
the base of  developers.  Although these organisational  costs  are  still  operant,  by 
decomposing the project into smaller sub-projects and assigning each to a surgical 
team, Brooks found an approximate way to balance the trade-off between speed of 
development and project staffing (Brooks 1995, pp. 35-37). 

Considering that more than three decades have elapsed since the development 
of the IBM OS/360, it  appears indeed a lasting insight of Brooks that a project's  
communication  and  coordination  costs  rise  with  the  square  of  the  number  of  
participants (while the work done rises linearly). A comprehensive 1981 study of 
sixty-three software projects in the aerospace industry confirmed Brooks' assertion 
that the trade-off between men and months is far from linear (Boehm 1981). In 
1989  Abdel-Hamid  developed  a  system  dynamics  model  of  the  software 
development  process  to  put  this  thesis  to  the test.  He found that  'adding  more 
people to a late project always causes it to become more costly but does not always  
cause it to complete later' (Abdel-Hamid 1989). In his model, the schedule of the 
project  suffers  only  when  members  are  added  during  the  final  stages  of 
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development. However, his results were  criticised on methodological grounds for 
not taking account of sequential constraints between development tasks: according 
to Hsia  et al.  (1999), 'the maximum number of staff members depends upon the 
number of independent subtasks'. In 1996 a global survey of managers in software-
related  industries  reported  that  increasing  team  size  has  a  negative  effect  on 
productivity  and  development  speed:  firms  with  smaller  teams  of  software 
developers tend to be faster and more productive, supporting 'the view that larger 
teams diminish productivity because of inefficiencies created by the difficulty of 
communicating within a large number of people' (Blackburn & Scudder 1996, p. 
883). To the same conclusion points a 2006 study of 117 software projects which 
found that non-modular code increases the maximum team size, which, in turn, 
decreases productivity (Blackburn et al. 2006).  

Meanwhile,  efforts  to  enhance  the  flexibility  of  the  practice  of  software 
development led to a more radical solution. The notion of modular programming, 
which gained currency with the development of the Unix operating system from 
the late 1960s onwards, envisaged a segmentation of projects into clearly defined 
tasks where each task is a program module and each module the responsibility of 
the programmer assigned to it  (Raymond 2003).  Its  practice  was given a strong 
impetus  in  1972  by  David  Parnas,  who  established  the  definitive  criterion  for 
decomposing  a  software  system  into  modules.  According  to  Parnas  (1972), 
decompositions based on flowcharts are inappropriate for large systems. Instead one 
should aim at minimising interdependencies among modules by hiding within a 
module information (such as design decisions subject to change) which should not 
be propagated to other modules. Encapsulated, that information cannot affect other 
parts of the system. This approach, like Brooks', attempts to constrain the presence 
of  interdependencies  in  the  development  process,  anticipating  that  (the 
development of a large software system is so complex that) many design decisions 
will have to be modified later in the course of production. But aside from that, the  
two  approaches  represent  fundamentally  different  software  development 
philosophies  as  well  as  different  principles  of  organisation.  For  Brooks, 
programming was a 'public practice':  he reckoned 'that exposing all the work to 
everybody's gaze helps quality control, both by peer pressure to do things well and 
by peers actually spotting flaws and bugs', which presupposes that developers have 
access to all parts of the software system so that they can test them, repair their  
defects and improve them (Brooks 1995, pp. 33, 271). By contrast, the principle of  
information hiding postulates that 
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every  module...is  characterised  by  its  knowledge  of  a 
design  criterion  which  it  hides  from  all  others.  Its 
interface or description [is] chosen to reveal as little as 
possible about its inner workings (Parnas 1972). 

The  underlying  assumption,  as  Brooks  (1995,  p.  78)  notes,  is  that  'the 
programmer is most effective if shielded from, rather than exposed to the details of  
construction of system parts other than his own'. The next twenty years, Brooks 
admitted in 1995, prove the effectiveness of Parnas' method in raising productivity 
and stepping up development (Brooks 1995, p. 272). By that time modularity had 
been established in the software industry as the dominant design principle for large 
projects.   

MODULARITY IN ORGANISATION THEORY
These  ideas  were  not  foreign  to  organisation  theorists,  who,  since  the  time  of 
Frederick Taylor and Henry Ford, knew full well that task decomposition affords 
substantial  productivity  gains  consequent  upon  the  simplification  of  the  labour 
process. In fact, from the 1950s onwards a current of ideas was developing at the 
intersections  of  general  systems  theory  and  organisation  studies,  preparing  the 
ground  for  a  general  organisation  theory  of  modularity.  Emblematic  of  this 
tendency, Herbert Simon's work was fundamental in laying the foundations for a 
methodical  study  of  modularity.  Simon  (1962)  held  that  to  analyse  a  complex 
system one must measure its degree of decomposability by distinguishing between 
interactions  within subsystems  and  interactions  among subsystems.  Systems 
galvanised by strong interactions among their components are non-decomposable. 
Nearly decomposable, on the contrary, are those systems in which inter-component 
linkages  are  weak  (though  non-negligible).  Arguably,  a  (nearly)  decomposable 
system whose components can be removed and recombined without compromising 
its  operation is  more resilient  to  change than a  system in which changing one 
component necessitates extensive changes in other components. The ability to mix-
and-match components in different configurations vastly expands the design space 
within  which  the  system  searches  for  new  solutions.  Hence,  as  the  fitness  of  
complex systems is conditioned by their degree of decomposability, it is desirable to 
minimise interdependencies  among subsystems by enclosing interactions (within 
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subsystems).  Under  the  prism  of  Simon's  analysis,  information  hiding –  the 
encapsulation  of  interactions  within  subsystems  –  appears  to  be  a  principle  of 
organisation crucial to all complex systems' ability to evolve. Its importance lies in 
effecting  conditions  of  (near)  decomposability.  His  discussion of  the division of 
labour in the firm is characteristic: from 'the information processing point of view',  
he writes, 'division of labor means factoring the total system of decisions that need 
to  be  made  into  relatively  independent  subsystems,  each  one  of  which  can  be 
designed with only minimal concern for its  interaction with the others'  (Simon 
1973, p. 270). 

Needless to say, Simon was not alone in mapping out the new terrain. Toward 
the same direction pushed the contributions of many others,  such as  Alexander 
(1964), Ashby (1960) or Weick (1976), who dwelled on computer science concepts 
and turned them upstream. Of particular interest is the concept of coupling, which 
in computer science refers to the degree that a module depends on other modules. 
Weick  (1976)  introduced  the  concept  in  organisation  studies  to  describe  the 
relation of interdependence among the constituent parts of organisational systems, 
stressing  the  capacity  for  adaptation  and  innovation  of  loosely-coupled  teams 
compared to the rigidity of tightly-coupled organisational configurations. 

The next thirty years saw the gradual emergence of an organisation theory of 
modularity. Ideas long circulating within the streams of organisation theory were 
now given precise formulation. In 1992 Langlois and Robertson wrote that product 
modularity 'enlists the division of labor in the service of innovation...by allowing 
specialist producers (and sometimes specialist users) to concentrate their attention 
on  particular  components'  (Langlois  &  Robertson  1992,  p.  302).  In  the 
microcomputer and stereo component industries that formed the epicentre of their 
study, the adoption of modular product architectures set  in motion a process of 
vertical and horizontal disintegration, promoting 'autonomous innovation, that is, 
innovation requiring little coordination among stages' (Langlois & Robertson 1992). 
In 1995 Garud and Kumaraswamy pointed out that in industries characterised by 
perpetual innovation and  systemic products (that is, products composed of many 
components  such  that  it  is  difficult,  if  not  impossible,  for  any  one  firm  to 
manufacture  all  of  them),  firms  adopt  modular  product  architectures  to  realise 
significant  'economies  of  substitution'  by  reusing  existing  components  in 
developing  higher-performance  products.  The  same  year  Ulrich  (1995,  p.  437) 
underlined  the  significance  of  product  modularity  in  enabling  'a  bureaucratic 
approach to organizing and managing development', which 'allows the complexity 
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of the product development process to be dramatically reduced'. In 1996 Sanchez 
and  Mahoney  argued  that  product  modularity  is  a  key  enabler  of  'strategic 
flexibility':  it  allows  production  processes  'to  be  carried  out  concurrently and 
autonomously by  geographically  dispersed,  loosely  coupled  development 
groups...thereby  increasing  the  absorptive  capacity  of  the  firm'  (Sanchez  & 
Mahoney  1996,  p.  70,  emphasis  in  original).  As  production  processes  can  be 
decoupled  and  performed  by  self-managing  organisational  units,  product 
modularity

can  reduce  the  need  for  much  overt  exercise  of 
managerial  authority  across  the  interfaces  of 
organizational  units  developing  components,  thereby 
reducing  the  intensity  and  complexity  of  a  firm's 
managerial  task  in  product  development  and  giving  it 
greater  flexibility  to  take  on  a  larger  number  and/or 
greater  variety of  product  creation projects  (Sanchez & 
Mahoney 1996, p. 73). 

According  to  Sanchez  and  Mahoney  (1996,  p.  73),  a  modular  product 
architecture 'embeds coordination in fully specified and standardized component 
interfaces'. In this way, product modularity confers modularity on the development 
process.  By definition, modularity is a form of product design using standardised 
interfaces  among  components  to  make  up  a  decentralised  system  in  which 
components are highly independent of one another (i.e. loosely coupled). In other 
words, the engineering concept of product modularity is devoid of meaning unless 
standardised  interfaces  are  presupposed  (Mikkola  2006).  Sanchez  and  Mahoney 
conceptualise  this  point  at  a  higher  level  of  abstraction,  contending  that  it  is 
through  the  embedded  control provided  by  standardised  interfaces  among 
components that hierarchical coordination is displaced:

In essence,  the standardized component interfaces  in a 
modular  product  architecture  provide  a  form  of 
embedded coordination11 that  greatly  reduces  the  need 
for  overt  exercise  of  managerial  authority  to  achieve 

11 Embedded coordination is defined by Sanchez and Mahoney (1996, p. 66) as 'the coordination of 
organizational  processes  by  any  means  other  than  the  continuous  exercise  of  managerial 
authority'. 
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coordination of development processes, thereby making 
possible the concurrent and autonomous development of 
components by loosely coupled organizational structures 
(Sanchez & Mahoney 1996, p. 64).

Sanchez and Mahoney's discourse is summed up in the argument that product 
modularity reduces drastically the need for coordination in the development of the 
components making up a systemic product, thus making possible their parallel and 
autonomous development. By implication, the 'strategic flexibility' stemming from 
the mitigation of coordination costs gives full scope to 'increasing the absorptive 
capacity of the firm' (p. 70), 'giving it greater flexibility to take on a larger number 
and/or  greater  variety  of  product  creation  projects'  (p.  73).  That  is,  product 
modularity imparts scalability to the production system.

Fig. 2.1: General form of modularity thesis

Scalability  means  that  the  production  system  can  enlarge  in  scale  whilst 
retaining  the  advantages  of  organisational  flexibility  and  efficiency  peculiar  to 
small-scale  activity  systems:  size  does  not  have  to  be  accompanied  by  a  high 
organisational price. To put it in terms consonant with Brooks' Law:   

Modularity  enables  many developers  to  work 
simultaneously  on  a  project,  while  at  the  same  time 
keeping integration and coordination costs low (Osterloh 
& Rota 2007, p. 160, emphasis ours). 

The proposition that product modularity, by reducing coordination costs, allows 
a  greater  number of  individuals  to  work on a  project  than would otherwise  be 
possible of course implies  that,  given a sufficiently modular architecture,  labour 
productivity  in  the  project  is  not  negatively  affected  by  the  expansion  of  the 
contributors' group, the effect of which  is to speed up production. Osterloh and 
Rota's (2007) description of the function of product modularity in the development 
of free and open source software (FOSS) is exemplary of this line of reasoning:  
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Because of modularity, the costs of the production of the 
source code  are  also  kept  low.  A modular  architecture 
invalidates  “Brooks'  Law” that  “adding  manpower  to  a 
late software project makes it later”. With a non-modular 
architecture,  having more people  involved in a  project 
means higher coordination costs that can in the extreme 
case,  render  marginal  returns  of  manpower  to 
productivity  negative.  Modularization  makes  useful 
contributions possible with reasonable integration costs 
(Osterloh & Rota 2007, p. 166).      

Osterloh and Rota's  elaboration of the subject  leads to the conceptual  model 
illustrated in Fig. 2.2 below, which situates Sanchez and Mahoney's argument in 
the context of Brooks' Law:   

Fig. 2.2: Conceptual model 

The intellectual synthesis of the organisational advantages of modular product 
design  finds  its  most  succinct  expression  in  Sanchez  and  Mahoney's  (1996) 
treatment,  which  represents  the  culmination  of  attempts  at  theory-building. 
Theory, however, needs to be substantiated by reference to empirical facts. Let us 
look  more  closely  therefore  at  each  of  the  hypothesised  benefits  of  modularity 
within  those  streams  of  organisation  theory  that  focus  on  their  empirical 
demonstration.   

Product modularity and coordination costs
The notion that product modularity reduces coordination costs in the production 
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process  figures prominently in  organisation theory.  Historically,  its  roots can be 
traced back to  Simon's  work.  In  the  Architecture  of  Complexity,  Simon (1962) 
illustrates the benefits of decomposing a problem into parsimoniously linked sub-
problems by using the example of watch-making. Partitioning the architecture of a 
watch  into  sub-assemblies  allows  Simon's  hypothetical  watchmaker  to  split  the 
process  of  producing a  watch into stages  that  can be completed independently, 
showing thus that the coordination burden, which is created by interdependencies 
between  activities  performed  to  achieve  a  goal,  can  be  mitigated  through 
architectural decompositions. For obviously, 'if there is no interdependence, there 
is  nothing  to  coordinate'  (Malone  & Crowston 1990,  p.  362).  The emphasis  on 
minimising task interdependence was not lost on subsequent organisation theorists 
who since have focused attention on partitioning development projects into tasks 
with that  view in mind (e.g.  von Hippel  1990).  To their credit,  decreasing task 
interdependence  in  a  project  has  been  found  to  reduce  coordination  costs  and 
development time (Gomes & Joglekar 2008).

More than anything else, the staggering growth of global outsourcing since the 
1980s gave widespread credence to the  view that 'the visible hand of managerial 
coordination is vanishing', its function 'devolving to the mechanisms of modularity 
and  the  market'  (Langlois  2003).  On  that  point  modularity  theorists  are  in 
agreement, tracing the enabling condition for this industrial transformation to the 
'embedded  coordination'  provided  by  'design  rules',  that  is,  shared  technical 
standards  that  effectively  reduce  governance  costs  (i.e.  search,  monitoring  and 
enforcement  costs)  across the  organisational  network  (Garud  &  Kumaraswamy 
1995; Langlois 2003; Langlois & Robertson 1992; Sanchez & Mahoney 1996). By 
establishing a 'technical grammar' for collaboration, as Argyres' (1999) study of the 
development  of  the  B-2  stealth  bomber  demonstrates,  standardised  component 
interfaces  allowed  the  various  'subcontractors  to  work  fairly  independently...by 
“modularizing” the [B-2 design] structure around several' of its components. In this 
way, 'deep standardization'     

limited the  need  for  hierarchical  authority  to  promote 
coordination' and 'allowed considerable decentralization 
of design decision-making' which 'was possible because of 
the  limited  need  for  a  central  authority  to  assist  in 
coordination efforts (Argyres 1999, pp. 162, 177).   
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Importantly,  the  phenomenon  of  the  disaggregation  of  productive  activities 
made  possible  by  product  modularity  is  not  limited  to  cutting-edge  technology 
projects  (as  the  one  studied  by  Argyres)  but  pervades  entire  industries.  In  the 
bicycle industry, for example, thanks to the bicycle's modular architecture, based 
on 'international standards that define how all of the components fit together to 
form  an  operational  system...firms  have  had  no  real  need  to  coordinate  their 
activities or communicate with each other. With the level of coordination required 
to  manufacture  products  being very  low,  market  contracts  have  replaced active 
coordination, creating an industry made up of highly independent firms' (Galvin & 
Morkel 2001, p. 44).

Given the enthusiasm manifest in the writings of organisation theorists for the 
withering away of 'the visible hand of managerial coordination', it should come as 
no surprise that the mitigation of coordination costs through modularisation has  
come  to  occupy  a  prominent  position  in  full-blown  theoretical  systems  as  in 
Baldwin and Clark's (2006a) modularity theory, which underscores three strategic 
aims of modularising a systemic product: to manage complexity, to enable parallel  
development and encourage experimentation in the face of uncertainty. In specific, 
modularity is 'tolerant of uncertainty' and 'welcomes experiments' because it allows 
'modules  to  be  changed  and  improved  over  time  without  undercutting  the 
functionality of the system as a whole'. Parallel development occurs as 'work on or  
in modules  can go on simultaneously'.  And complexity  is  rendered manageable 
through the more effective division of cognitive labour that  product modularity 
brings in its wake. In sum, the effect of splitting a systemic product into modules is 
to

move  decisions  from  a  central  point  of  control  to  the 
individual modules. The newly decentralized system can 
then  evolve  in  new ways  (Baldwin  &  Clark  2006a,  p. 
183).

Accordingly 'the  new  organizational  structure  imposes  a  much  smaller 
coordination burden on the overall...endeavor' (Baldwin & Clark 2006a, p. 191). It 
becomes easily understood, of course, that this theorising is tenable to the extent 
that  modularising  a  systemic  product  is  presumed  to  effect  conditions  of 
decomposability  among  its  components,  thereby  allowing  their  development  to 
become independent  from other  components.  Baldwin and Clark's  approach,  in 
particular,  is  built  on the premise that dependencies among components can be 
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identified and eliminated through design rules (i.e. standards) and encapsulation. 
There is good reason why this is commonly assumed (especially in theory-building), 
for this is the ideal outcome of the modularisation process: a refashioned product 
that can be decomposed into independent components yet function together as a 
whole.  

In practice though, this goal may prove elusive. One of the implications of a 
radically  decentralised  industrial  structure  regulated  by  standardised  component 
interfaces is that making changes to the product architecture may not be feasible 
for  any one  organisational  entity  participating  in  its  production.  In  the  bicycle 
industry, for example, 'to change the crank pedal interface would require a supreme 
level of coordination and no firm is presently strong enough to be able to enforce 
such a  change'  (Galvin & Morkel  2001, p.  43).  In fact,  system-level  changes,  as 
opposed  to  component-level  changes,  are  undesirable  to  the  extent  that  they 
destroy  compatibility  between  components  (Galvin  &  Morkel  2001;  Garud  & 
Kumaraswamy 1995; Henderson & Clark 1990; Langlois & Robertson 1992, p. 302; 
Ulrich 1995). More importantly, early modularisations of a product design are often 
problematic  on  account  of  architects'  imperfect  (ex  ante)  knowledge  of 
interdependencies that arise as the project unfolds.12 Contrary to what modularity 
theory  stipulates,  an  empirical  study  of  seven  IT  organisations  operating  in 
industrial  settings  where  'interfirm  modularity  allows  the  products  of  different 
firms to work together in a decentralized system, often configured by the user', 
found  to  its  astonishment  that  interdependencies  were  plainly  ubiquitous 
(Staudenmayer  et  al.  2005).  As  interdependencies  could  not  be  sufficiently 
identified in advance or 'emerged throughout the product development process, 
despite efforts to limit them', managers resorted to dealing with them as they arose 
rather than trying to eliminate them outright. As a result, the managerial process 
was burdened with the cost of coordinating external relationships, the complexity 
of which imposed the creation of additional managerial posts (such as  that of a 
'relationship manager') as a focal point for coordination (Staudenmayer et al. 2005). 
The  chaotic  character  of  this  development  setting  typifies  a  systemic  product 
which,  in  spite  of  being  split  into  distinct  modules,  is  not  decomposable.  As 
dependencies among modules are not negligible, the need for coordination asserts 
itself.

In view of such cases, a growing body of the literature has come to criticise the 

12 'Perfectly modular designs do not spring fully formed from the minds of architects' (Baldwin and 
Clark 2000, pp. 76-77).
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proposition that  product modularity reduces coordination costs.13 In the aircraft 
engine and chemical engineering industries, Brusoni and Prencipe (2001) observed 
that  the introduction of  product modularity did not lessen the need for central  
coordination,  the  function  of  which  was  subsequently  performed  by  systems  
integrators.  In  a  follow-up  study  of  the  division  of  engineering  labour  in  the 
chemical industry, Brusoni (2005) re-examined whether modularity at the product 
level  brings  about  modularity  at  the  level  of  the  organisation  that  develops  it.  
Again, he found that the modular architecture of chemical plants did not obviate 
the need for central coordination across the network of organisations engaged in 
their  construction.  The  need  to  coordinate  a  distributed  development  process 
involving  largely  independent  teams  of  specialists  consolidated  the  position  of 
systems  integrators,  rendering  them  necessary.  In  a  subsequent  study  of  tire 
manufacturing,  Brusoni  and  Prencipe  (2006)  looked  at  the  introduction  of  a 
modular manufacturing process at Pirelli Tires in the late 1990s. They found that 
'modularization at the product and plant level led to a process of demodularization 
and  integration  at  the  organization  level...More  specifically,  it  was  integration 
within  the  knowledge  domain that  enabled  the  effective  modularization of  the 
technological domain' (Brusoni & Prencipe 2006, p. 186). As in their prior work, 
they  concluded  that  one-to-one  mapping  between  product  and  organisational 
structure is not possible when the locus of knowledge does not coincide with the 
partitioning  of  tasks  as  modelled on the  product  architecture.  For  the software 
engineers who joined the project, for example, it was impossible to develop the IT 
infrastructure for the manufacturing process without 'generating new connections 
among product and process engineers and across organizational units' (Brusoni & 
Prencipe 2006, p. 186). The need to comprehend and assimilate a diverse body of 
knowledge forced them to collaborate with other specialists such as tire designers. 
On the same wavelength, a study of changes in size and resolution of notebook 
computer  displays  in  relation  to  the  organisational  design  decisions  made  by 
notebook computer makers in the same period (1992-1998) found that 'modular 
products lead to more reconfigurable organizations' but not to 'shifting activity out 
of hierarchy' (Hoetker 2006, p. 513). 

Summing up, although prior work in organisation theory has dealt  with the 
issue of coordination costs in organisational networks based on modular product 
architectures,  besides  the  use  of  such  indicators  as  the  coordinating  role  of 

13 For an authoritative index of these 'revisionist' studies up to 2005, see the list of references in  
Ernst (2005).
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intermediaries in the value chain (e.g. 'systems integrators' in the studies of Brusoni 
and  Prencipe)  or  the  frequent  occurrence  of  communication  across  different 
organisational  departments,  no attempt  has been made to quantify the effect  of 
modularity  on  coordination  costs.  Qualitative  indicators  are  no  doubt  useful  to 
provide  a  rich  description  of  the  phenomenon  under  study,  based  on  which 
hypotheses  can  be  formulated,  but  notably  less  so  for  the  purpose  of  testing 
hypotheses already formulated by prior research. 

Product modularity and productivity
Several  empirical  studies  have  examined  the  impact  of  product  modularity  on 
productivity  and  organisational  performance.  An  early  study  of  fifty-seven  car 
assembly plants worldwide found that the number of working hours required per 
vehicle  increase  in proportion to  component  interdependence (MacDuffie  et  al. 
1996).  Subsequent  investigations confirmed the product modularity-performance 
link. In the home appliance industry, for example, Worren et al. (2002) found that 
product  modularity,  by  increasing  product  variety,  boosts  performance.  More 
recently,  a  study  of  fifty-seven  North-American  manufacturers  of  automotive 
components showed that product modularity has a pervasive organisational impact: 
it leads to cost reductions and improvements in product quality; it enhances the 
manufacturing system's capacity to handle product variety; it reduces development 
cycle-time through improved component availability and parallel  manufacturing 
(Jacobs et al. 2007). 

These findings lend support to the proposition that product modularity has a 
positive effect on organisational performance. Nevertheless, though it was in the 
bosom of the software industry that modularity was first conceived and employed 
as a method for the development of complex products, there is no empirical test 
demonstrating this claim in the context of a large-scale software project. Most of 
the studies available deal with projects developed by small groups, which are not 
encumbered  with  the  organisational  costs  of  large-scale  collaboration.  A 
comparison of two commercial projects by Cain and McCrindle (2002), for example, 
showed that the project with the lower degree of coupling among its modules was  
that which exhibited the higher labour productivity, but as none of the projects 
exceeded  fourteen  members,  this  needs  to  be  tested  and  validated  in  projects 
featuring large-scale collaboration. 
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Product modularity and group size
The link between product modularity and group size was strongly emphasised in an 
empirical  study  of  the  modular  re-design  of  the  Mozilla  Web  browser,  which 
concluded  'that  different  modes  of  organization  are  associated  with  [product] 
designs that possess different structures' (MacCormack et al. 2006). Prior to the re-
design,  Mozilla  was  developed  by  a  closely-knit  group  of  programmers  on  the 
payroll of Netscape Corporation. Then in 1997 Netscape released its source code for 
free  under  an  open  source  license  in  an  attempt  to  undercut  competition  by 
distributing production requirements across the network. A modular re-design was 
deemed necessary to harness the power of distributed development by a loosely-
coupled  network  of  volunteer  developers  scattered  all  over  the  world;  it  was 
motivated  by  the need felt  for  a  product  architecture  conducive  for  large-scale 
collaboration over the Internet. In line with the project's expectations, 'the redesign 
to a more modular form was followed by an increase in the number of contributors' 
(MacCormack et al. 2006, p. 1028). Although the growth of contributors could be 
seen as  reinforcing the centrality attributed to product modularity in catalysing 
new  organisational  structures,  the  authors,  MacCormack,  Rusnak  and  Baldwin, 
were  careful  not  to  overlook  the  possibility  that  the  structure  of  the  product 
evolved to  reflect  the  production  environment  in  which  it  was  now  being 
developed,  the  decisive  factor  of  which  was  an  expanding  and  geographically 
distributed base of contributors.      

Paralleling these results, Crowston and Howison's (2006) analysis of bug-fixing 
interactions  in 174 free  software projects  from Sourceforge,  the GNU Savannah 
system and the Apache Software Foundation Bugzilla bug tracking systems, suggests 
that  

Small  projects  can be  centralized  or  decentralized,  but 
larger projects are decentralized...As projects grow, they 
have  to  become  more  modular,  with  different  people 
responsible for different modules. In other words, a large 
project  is  in  fact  an  aggregate  of  smaller  projects, 
resulting in what might be described as a “shallot-shaped” 
structure, with layers around multiple centers (Crowston 
& Howison 2006, p. 81).
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Fig. 2.3:  Curl, a centralised project 
(Source: Crowston & Howison 2006) 

Fig. 2.4: Squirrelmail, a decentralised 
project (Source: Crowston & Howison 

2006)  

The two plots above (Fig. 2.3, 2.4) illustrate this point well: one sees how bug-
fixing  interactions  are  clustered  around  a  single  central  node  in  Curl,  a  small 
project,  in  contrast  to  Squirrelmail,  a  much  larger  project,  where  there  exist 
multiple centres corresponding to distinct modules of the organisational system.

Unfortunately, though attesting to the link between group size and modularity, 
these findings do not go far in elucidating the dynamic of development, limiting 
thus our ability to draw conclusions. The main problem is that the time-perspective 
is missing. For instance, Crowston and Howison's analysis groups all interactions 
among bug-fixers over time in one static network, with the result that dynamic 
patterns in the data may be overlooked. Similarly, MacCormack et al.'s approach 
consists essentially in a comparison of different snapshots in time of the software's  
architectural  structure  –  before  and  after  its  modular  redesign  –  knowing  in 
advance that the number of contributors increased perceptibly in that period. To 
apprehend how changes  in product  structure affect  organisational  structure and 
conversely  how  organisational  changes  feed  back  on  product  structure,  an 
evolutionary approach based on longitudinal data is required, which is missing from 
the research literature.

However,  aside from their methodological shortcomings,  it  is  no coincidence 
that both Crowston and Howison's and MacCormack et al.'s work focuses on FOSS 
development.  Drawing  upon  FOSS  as  a  test-bed  for  generating  and  testing 
hypotheses  is  increasingly  more  characteristic  of  the  research  literature  of 
modularity. That cannot be accounted for by the free availability of empirical data 
alone;  rather,  the  emphasis  on  FOSS  springs  from the  view that  modularity  is 
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immanent in the mode of informal and distributed development exemplified by 
FOSS projects.     

STUDYING  MODULARITY  IN  FREE  AND  OPEN  
SOURCE SOFTWARE DEVELOPMENT 

The  importance  of  a  modular  product  architecture  in  shaping  development 
dynamics is nowhere more pronounced than in the realm of free and open source 
software (FOSS). That is not accidental. A landmark event in the history of FOSS 
and software development more generally is the development of the Unix operating 
system, whose modular design, as aforementioned, paved the way for the wider 
adoption  of  modularity  in  the  software  industry.  From  an  organisational 
perspective,  its  development  was  rather  innovative:  it  used  new  tools,  which 
enabled  the  application  of  new  techniques;14 it  implemented  new  ideas  and 
concepts;  and  it  was  built  in  a  distributed  fashion,  owing  to  the  geographical 
diaspora of its developers across different sites. For Ken Thompson, co-inventor of 
Unix,  the  choice  of  a  modular  design  was  dictated  by  the  need  to  tame  the 
complexity  of  the  undertaking:  'Early  Unix  programmers  became  good  at 
modularity because they had to be. An OS [operating system] is one of the most 
complicated pieces of code around. If it  is  not  well structured, it  will fall  apart' 
(quoted in Baldwin & Clark 2000). The successful development of Unix showcased 
the power of modularity. And the central role Unix played in the software industry 
for the next three decades only affirmed it.  However, it was not until the early  
1990s that massively distributed development came into the foreground. The broad 
availability of consumer connections to the Internet revolutionised the scope for 
distributed  development.  Linux,  an  operating  system  kernel  thriving  on  the 
volunteer contributions of a globally distributed community of software developers, 
was  the  first  project  that  leveraged  the  network  for  this  purpose.  In  1991,  its  
founder,  Linus  Torvalds,  announced the project  on the  Internet,  calling  on the 
hacker  community to  join him in the development  of  a  computer  'program for 
hackers  by  a  hacker'  (Torvalds  1991).  The  feedback  was  as  massive  as  it  was 
unexpected. Soon hundreds were contributing problem reports and modifications 
to the project. As the base of participants was rapidly expanding, the need to re-

14 Unix was special in several technical respects: it is perhaps best known for pioneering the use of 
the C programming language, which since has been diffused massively. Older operating systems 
were developed with assembly language.  
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design the software with a view to making it more modular was acutely felt. In the  
words of Torvalds (1999):

With the Linux kernel it became clear very quickly that 
we want to have a system which is as modular as possible. 
The open-source development model really requires this, 
because otherwise you can't easily have people working 
in  parallel.  It's  too  painful  when  you  have  people 
working  on  the  same  part  of  the  kernel  and  they 
clash...So once again managing people and managing code 
led to the same design decision. To keep the number of 
people  working  on  Linux  coordinated,  we  needed 
something like kernel modules. 

Modularity, by eliminating dependencies among different parts of the system, 
allows developers to focus their work on any one module without having to worry 
about how that will affect or be affected by developers working on other modules, 
reducing thus the need for  central  control  and coordination in the project.  For 
Torvalds, on account of its function in the development process as a mechanism by 
which conflicts are tempered, a modular architecture was a precondition for Linux's 
parallel development. As he explains:  

Without modularity I would have to check every file that 
changed, which would be a lot, to make sure nothing was 
changed  that  would  effect  anything  else.  With 
modularity, when someone sends me patches to do a new 
filesystem and I don't necessarily trust the patches per se, 
I  can  still  trust  the  fact  that  if  nobody's  using  this 
filesystem,  it's  not  going  to  impact  anything  else 
(Torvalds 1999).

Ever  since  Torvalds  made  these  comments,  it  has  been  commonly  accepted 
among  FOSS  developers  that  the  open  source  development  model  requires  a 
modular  product  architecture  (e.g.  O'Reilly  2001;  Raymond 1999).  Echoing  this 
view, other practitioners like Jamie Zawinski, former leader of the Mozilla project, 
are no less categorical that a modular software architecture, by decoupling the work 
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of different groups of developers, effectively creates independent sub-projects, thus 
eliminating the need for coordination among them:     

Most  of  the  larger  open  source  projects  are  also  fairly 
modular, meaning that they are really dozens of different, 
smaller projects.  So when you claim that  there are ten 
zillion  people  working  on  the  Gnome  project,  you're 
lumping together a lot of people who never need to talk 
to each other, and thus, aren't getting in each other's way 
(Zawinski quoted in Jones 2000).

The presentation of modularity by the research literature on FOSS is no less 
panegyric.  To  give  an  example,  Schweik  et  al.  found  a  statistically  significant 
positive  correlation between the number of  developers  and project  success  in a 
sample of 107747 projects from the sourceforge repository, which they interpreted 
simplistically as support for the argument 'that the relatively flat, modular system of 
coordination in  FOSS  projects  allows  the  addition of  programmers  without  too 
many coordination costs'  (Schweik  et  al.  2008, p. 424). Not many studies  cast a 
critical  doubt  upon  modularity's  presumed  moderating  effect  on  the  need  for 
central  coordination. An exception to the general  rule is  a  study of  the Debian 
project  by  Garzarelli  and  Galoppini  (2003),  who  argue  that  'the  economies  of 
substitution'  realised by modular product design are  not devoid of  coordination 
costs.  The  Debian  project,  in  particular,  attempts  to  manage  the  uncertainty 
generated by product variation by standardising and formalising the procedure of 
selection  and  advancement  of  project  members.  In  that  sense,  'hierarchy  in 
voluntary FS/OSS organization...[is] nothing more than the attempt to balance...the 
number  of  contributors  and  the  number  of  software  contributions  accepted' 
(Garzarelli & Galoppini 2003, p. 34). Noteworthy is also Rusovan et al.'s analysis of 
the Linux ARP module, which, finding that 'the code is poorly documented, the 
interfaces  are  complex,  and  the  module  cannot  be  understood  without  first 
understanding what should be internal details of other modules', emphasised the 
potential  maintainability  and  coordination  issues  caused  by  modularisations  in 
which  the  principle  of  information  hiding  has  not  been  properly  implemented 
(Rusovan et al. 2005, p. 120). The difficulty of understanding and checking what 
the ARP module  does  without  looking at  the internals  of  other  Linux modules 
implies that coordination costs in the development process are considerable and 
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'unless they have already become familiar with it, Linux TCP/IP code is difficult for 
even the  most  experienced programmers',  limiting  their  ability  to  enhance  and 
modify the software (Rusovan et al. 2005, p. 116).   

For  the  most  part,  however,  economic  and  organisational  research  in  FOSS 
development has tended so far to view modularity as 'a technical and organizational 
way to manage complexity'  (Osterloh & Rota 2007, p. 160),  presuming that  the 
modular  architecture  of  FOSS  explains  to  a  large  extent  how  a  multitude  of 
programmers, scattered all over the world,  can collaborate on projects in which 
coordination  through  command-and-control  hierarchies  is  conspicuously  absent 
(e.g.  Benkler  2006;  Osterloh  &  Rota  2007;  Raymond  1999;  Weber  2004). 
Characteristically,  Narduzzo  and  Rossi  (2005,  p.  90)  contend  that  the  modular 
architecture  of  Unix,  which  Linux  inherited,  enables  parallel  development  and 
slashes  coordination costs,  as  developers  can 'carry  out  development  of  specific 
parts of the system in autonomy and without any need to coordinate their efforts  
with  other  sub-projects'.  In  consequence,  it  is  because  of  modularity  that 
productivity in the Linux project has not been negatively affected by the expansion 
of the group of contributors. Labour productivity falls in the wake of an increase of 
interdependencies. But since a modular design cuts down on interdependencies,      

A large number of participants in a project may be not a 
sufficient  condition  to  generate  dysfunctional  effects, 
such  as  diminishing  or  negative  marginal  return  of 
manpower to productivity... [since] the key aspect in this 
regard  is  represented  by  the  degree  of  task  
interdependency between  the  various  members 
belonging to the project...the high productivity...is largely 
due  to  the  massively  modularized  structure  of  the... 
[Linux]  project,  enabling  the  existence  of  highly 
independent sub-projects joined by a limited number of 
developers (Narduzzo & Rossi 2005, p. 91, emphasis ours). 

Narduzzo and Rossi's syllogism evinces a logic that is not hard to follow: as the 
number  of  individuals  that  could  be  simultaneously  engaged  in  a  project  is  a 
function  of  the  degree  of  task  interdependence  in  the  development  process,  it 
follows  that  modularity  is  an  enabling  condition  for  large-scale  collaboration 
without  productivity  loss.  Development  by  such  a  large  and  geographically 
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distributed  group  is  possible  only  because  participants  can  contribute  relatively 
independently  of  what  others  are  doing  in  the  project.  A  modular  product 
architecture  reduces  dependencies  among  modules.  By  doing  so  it  reduces 
dependencies  among  development  tasks  and,  by  extension,  among  developers. 
Productivity  does  not  suffer  with  the  expansion  of  the  developers'  group,  as 
communication and coordination costs  remain low.  Under these  conditions,  the 
effect  of  adding  more  developers  is  to  speed  up  production,  thus  raising 
productivity. In Langlois and Garzarelli's (2008) exploration of modularity in FOSS 
development, this line of argument is epitomised in full swing: 

A  modular  system  increases  the  potential  number  of 
contributors; and the larger the number of collaborators 
working  independently,  the  more  the  system  benefits 
from rapid trial-and-error learning (Langlois & Garzarelli 
2008).

Despite  the fact  that  this  conception of  the role  of  modularity  has  come to 
characterise the full breadth of organisational discourse on FOSS, a careful review 
of the literature reveals no conclusive proof of the hypothesised moderating effect 
of product modularity on coordination costs. The claim that coordination costs are 
mitigated by product modularity is  often treated as  a self-evident axiom, rather 
than  as  an  empirically  testable  proposition.  In  fact,  empirical  validation  of  the 
benefits of modularity is also lacking with respect to its effect on group size and 
productivity. Let us take a closer look at the empirical evidence for the benefits of  
modularity in FOSS development. 

H1:  Product  modularity  reduces  coordination  costs  in  
FOSS projects

It  is  interesting  that  while  this  proposition  has  been  discussed  at  length  in 
organisational  discourse  for  more  than  fifteen  years,  there  is  no  record  of  a 
quantitative  validation  of  the  moderating  effect  of  product  modularity  on 
coordination costs, nor of its falsification.15 Although several studies have dealt with 

15 The lack of scientific proof has not passed unnoticed. In their literature review, Gershenson et al.  
(2003, p. 307) noted that they 'have not found a single experiment to quantify or at least prove the 
claimed benefits of modular product design'.  
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the impact of product modularity on coordination, none has attempted to quantify 
the claimed benefit of modular product design. The sole exception is a recent study 
of the degree of collaboration among contributors to KDE, a large FOSS project, in 
the course of ten years of development by Capiluppi and Adams (2009) who tracked 
the communication paths among developers over time, weighting a communication 
path between any two developers according to the number of source code files on 
which they collaborated. They found that fewer than ten developers participated in 
the  project's  early  stage  of  development,  which  was  characterised  by  extensive 
communication within the group.  Then,  as  the project  started growing and the 
codebase  was  restructured  with  a  view  to  increasing  its  modularity, 
'communication compaction' (i.e. the average weight of path between developers) 
declined down to one third of its original value. In the last stage, when the number 
of participating developers exceeded three hundred, the compaction was still the 
same as when the project had no more than ten developers, that is to say, three 
hundred  developers  needed  'the  same  amount  of  communication  as  when  the 
developers  were  only  10'  (p.  274).  Capiluppi  and  Adams  (2009)  qualified  these 
findings by arguing that while hundreds contribute to large FOSS projects such as 
KDE,  most  of  the  work  is  actually  done  by  a  minority  of  high-contribution 
participants commonly referred to as core developers. 
 

Fig. 2.5: The core-periphery structure of large FOSS projects

From this vantage point, the reason why Brooks' Law seems not to apply in the 
project is first because the number of core developers is such that the organisational 
costs of their collaboration (viz. the complexity of their interactions) do not become 
unmanageable; and second, because their activities are only loosely-coupled with 
those performed by the majority of 'low-contribution' developers. Whereas adding 
more developers to the core increases coordination costs, adding more developers to 
the periphery only increases the likelihood that bugs will be promptly identified 
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and fixed. That is  to say,  the positive correlation between scale and complexity 
holds only in the core but not in the periphery of the project (see also Lee & Cole 
2003, p. 643). Different levels of coordination costs inhere in different development 
tasks and hence in different layers of the FOSS organisational structure. Because of  
low  coordination  costs  involved  in  peripheral  tasks,  even  'low-ability'  (that  is,  
relatively unskilled and inexperienced) developers can contribute. And since they 
do not need to work as a close-knit team, problem-reporting and debugging are 
'parallelisable': an infinite number of individuals can be simultaneously engaged in 
reporting  bugs  and  fixing  them:  'although  debugging  requires  debuggers  to 
communicate  with  some  coordinating  developer,  it  doesn't  require  significant 
coordination between debuggers.  Thus it  doesn't  fall  prey to the same quadratic 
complexity  and  management  costs  that  make  adding  developers  problematic' 
(Raymond  1999).  What  modularity  does  is  simplify  debugging  by  facilitating 
understanding  of  the  internals  of  modules,  as  weakly-coupled  components  are 
easier to understand and thus easier to change and debug (Bernstein 2011).  Put  
differently, the coordination costs involved are independent of group size. Yet this 
holds only for peripheral functions. The degree of collaboration required for the 
development of new functionality is significantly higher, and so are the respective 
coordination costs.  In the light of this analysis, modularity is  what allows FOSS 
projects to integrate a plethoric stream of minute contributions – in the form of  
problem-reports  and  fixes  –  without  exacerbating  the  organisational  costs  of 
collaboration  among  core  developers  (Benkler  2006;  Capra  et  al  2008,  p.  769). 
Although  that  is  without  doubt  an  important  perspective  on  the  function  of 
modularity in FOSS development, however by so qualifying their results, Capiluppi 
and  Adams  (2009)  leave  the  question  unanswered  of  how core  developers  are 
distributed across the increasing number of modules making up KDE and whether 
modularity  mitigates  the  need  for  active  coordination  between  distinct  KDE 
modules and by extension between the developers working on them.16 

16 An  equally  serious  flaw  in  their  work  lies  in  the  confusing,  and  at  times  contradictory,  
interpretation given to the results of their analysis. Consider, for instance, the results they report in 
a follow-up paper in which 'communication compaction' is phrased as 'coordination cohesion'. 
Here they find that 'in this first phase [in the development of KDE], fewer than 10 developers  
produce high cohesion scores, greater than 20' (Adams et al. 2009, p. 322). But when turning to 
the third and final stage of KDE's development, they mention that 'an apparent critical mass is  
achieved, requesting a coordination cohesion vastly larger than when found when the project had 
only 10 developers' (Ibid., p. 322) (indeed, by looking at the relevant plot in Fig. 2 in p. 323, one  
observes that cohesion rises from 20 up to 160 over time). This result, by showing that the volume 
of communication among developers rises over time, obviously contradicts their previous finding 
that communication compaction in the final stage is the same as in the first stage.
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H2: Product modularity increases the potential number of  
contributors to FOSS projects

According  to  Sanchez  and  Mahoney  (1996),  product  modularity  increases  the 
'absorptive capacity of the firm': it imparts scalability to the development process. 
Seen in the context of Brooks' Law, the hypothesis holds that product modularity 
increases  the  potential  number  of  contributors  to  a  project  without  negatively 
impacting  labour  productivity.  In  the  more  theoretical  strands  of  the  research 
literature, the link between product modularity and group size has nowhere been 
attested to more emphatically than in a simulation study by Baldwin and Clark 
(2006b) of the interplay between code architecture and degree of participation in 
the development of FOSS:       

Projects  not  worth  undertaking  under  a  monolithic 
architecture may attract  tens or even hundreds of self-
interested  developers  under  a  sufficiently  modular 
architecture (Baldwin & Clark 2006b, p. 1123). 

Because  changes  can be  made  to  specific  modules  without  undercutting  the 
functionality of the system as a whole, a modular architecture enhances the 'value 
options'17 embedded in a codebase, as opposed to a monolithic (i.e. non-modular) 
architecture where option values are low, as changes tend to ramify throughout the 
system.  In  consequence,  'as  the  number  of  modules  and  the  option  values 
embedded  in  the  system  increase,  more  developers  will  work  in  equilibrium' 
(Baldwin & Clark 2006b, p. 1122). 

Empirical  backing  for  Baldwin  and  Clark's  proposition  is  not  lacking.  Den 
Besten et al. (2006) examined ten large FOSS projects18 spanning a period of five to 

17 An  option, according to modern finance theory, is 'the right but not the obligation to choose a  
course  of  action  and  obtain  an  associated  payoff'  (Baldwin  &  Clark  2006b,  p.  1117).  This 
conceptual  instrument  is  used by Baldwin and Clark to  model  the value  of modular  product 
design upon the assumption that 'a new design creates the ability but not the necessity – the right  
but not the obligation – to do something in a new way...In this sense a new design is an option' 
(Ibid.). Thus, the analysis of value options in their work is geared to assessing the extent that the 
architecture of a systemic product encourages experimentation with regard to viable alternatives 
(i.e. substitutes) at the module-level. The same analytical approach can be found in Sullivan et al. 
(2001) and LaMantia et al. (2008). 

18 The  projects  included  in  the  analysis  were:  NetBSD,  PostgreSQL,  Apache,  Mozilla,  Gaim, 
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ten  years  of  development  to  investigate  whether  collaboration is  influenced by 
several characteristics of source code at the file level, and found that 'more modular 
code – here, more functions in files' – is associated with a greater average number 
of developers making changes per month, whereas more complex files attract less 
developers 'maybe because they induce a more exclusive selection of who could 
maintain a given piece of specially complex code' (den Besten et al 2006, p. 239). 
Nevertheless, these results do not constitute proof. The problem is that den Besten 
et al. conflate decent coding practice with modularity. In a sense, at file-level, the 
two  could  be  considered  the  same,  but  in  general  the  notion of  modular  code 
implies that modules contain several files that bear as little outward dependency as 
possible towards the rest of the code. This means that to examine modularity in the 
context of a software project, the scope of analysis should be at a higher level than  
the number of functions in individual files.19  

The  proposition  that  product  modularity  increases  the  potential  number  of 
contributors to a project is strongly supported by the findings of MacCormack et al. 
(2006) who examined the original Mozilla web browser (developed as a proprietary 
product by Netscape) and its evolution as an open source project after 1997 when it 
was  redesigned  with  a  strong  focus  on  modularity.  They  found  significant 
differences  in  their  design  structures:  the  redesigned  Mozilla  software  had  a 
markedly  more  modular  structure.  Moreover,  in  line  with  the  project's 
expectations, the modular redesign was accompanied by an increase of contributors 
to the project.  While this result  seems to confirm the proposition that modular 
product design increases the potential number of project contributors, MacCormack 
et  al. stressed that  part  of  its  explanation lies  in the physiognomy of  the FOSS 
development environment. FOSS development is distributed across a multitude of 
programmers scattered the world over, with limited or no possibility for face-to-
face communication – the need therefore for a product architecture that facilitates 
coordination in a distributed, informal and virtual group is critical. Underlining the 
importance of considering the broader context  of  the FOSS development model 
when interpreting the relationship between Mozilla's  software structure and the 

OpenSSH, Python, GCC, Ghostscript and CVS. 
19 A secondary criticism of den Besten et al.'s (2006) measurement of modularity could be advanced 

on the grounds that it is at odds with software engineering definitions of modularity that lay stress  
on minimising the number of functions per component. By taking the latter definition as point of 
departure, it could well be argued that 'more functions in files' indicate a less modular software 
system – rather than a more modular one as den Besten et al.  perceive it.  For a definition of  
modularity that puts emphasis on minimising functions per component, see for example Ishii et al.  
(1995). 

38



number  of  project  contributors,  MacCormack  et  al. argued  that  while  product 
modularity is required for distributed development by a large group, it is equally 
plausible  that  the  design  structure  of  the  software  evolved to  reflect  the 
environment  in  which  it  was  now  being  developed,  thus  mirroring  the 
organisational  structure of  the Mozilla  development  process.  From this  point  of  
view,  modular  design  is  both  a  requirement  and  a  consequence  of  the  FOSS 
development model. This conclusion is reinforced by Capra et al.'s (2008) analysis 
of  75  FOSS  projects  (including  large  projects  such  as  MySQL,  Mozilla  and 
OpenOffice),  which highlighted the catalytic  role  of  modular  product design in 
enabling the governance structure typical of  FOSS projects,  whose informal and 
distributed  character  simultaneously  acts  as  a  catalyst  for  higher  levels  of  code 
modularity (see also Capra 2008). Reinforcing the interpretation that the pattern of 
interactions among contributors, though driven by architectural design for the most 
part,  determines  –  at  least  to  some  extent  –  the  software  system's  dependency 
relations, a follow-up study by the same researchers compared five paired software 
products with similar function and level of sophistication, finding that 'larger, more 
distributed  teams  tend  to  develop  products  with  more  modular  architectures' 
(MacCormack et al. 2008a, p. 2). 

Arguably, by laying stress on how different modes of organisation are associated 
with product designs that possess different structures, the interpretation Capra et al. 
(2008) and MacCormack et al. (2006, 2008a) place upon these findings reverses the 
terms of the hypothesis so that the claimed direction of causality is  from group 
dynamics to product structure:

An increase of contributors to a FOSS project results in  
an increase of modularity  (H2 reversed)

However, there are threats to the validity of this conjecture. The propagation 
cost  metric  that  MacCormack et al. use to measure modularity provides a fairly 
accurate view of the complexity of the software as a whole, counting both direct 
and  indirect  (i.e.  through  a  chain  of  dependencies  across  them)  dependencies 
among  files,  but  it  does  not  distinguish  dependencies  within  modules  from 
dependencies among modules – that is,  it  does not take account of  clustering: a 
modular  design  should  minimise  the  interactions  between  modules  more  than 
interactions in general (Parnas 1972; Sharma & Yassine 2004, p. 40; Simon 1962; 
Wheeler 2007). Instead, it assumes that all dependencies between files, both direct 
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and indirect, incur the same cost, regardless of where the files are located or how 
long  the  path  length  is  between  them.  That  is  clearly  not  a  detail  of  minor 
importance,  for  the  essential  aim  of  modularising  a  system  is  to  minimise 
interactions  among  modules  by  encapsulating  them  within  modules  (Ethiraj  & 
Levinthal 2004, p. 161; Simon 1962; Sinha & Van de Ven 2005, p. 399). Because the 
criticality of the distinction between interactions among and within modules eludes 
their  measurement method, MacCormack et  al.'s  analysis  conflates  the need for 
coordination among files – which the propagation cost reflects – with the need for 
coordination among modules, which ought to be the actual object of inquiry.         

H3:  Product  modularity  has  a  positive  effect  on  labour  
productivity in FOSS projects

The argument that product modularity has a positive effect on labour productivity 
is  often  raised  in  organisational  studies  of  FOSS  development.  According  to 
Narduzzo and Rossi's (2005) study of modularity in the Linux project,    

the  high  productivity...is  largely  due  to  the  massively 
modularized  structure  of  the...project,  enabling  the 
existence of highly independent sub-projects joined by a 
limited number of developers (Narduzzo & Rossi 2005, p. 
91).  

Although  this  claim  has  been  reiterated  in  other  studies  (e.g.  Langlois  & 
Garzarelli 2008), there is no empirical proof supporting it. Attempting to bridge this 
gap, increasingly more investigations turn to (the analysis of) software repositories 
such as version control systems (e.g. CVS), defect tracking systems (e.g. GNATS) 
and  archived  project  communications  (i.e.  mailing  lists)  for  sources  of  data 
amenable  to  quantitative  measurements.  A case  in  point  is  Giuri  et  al.'s  (2008) 
analysis of 54229 FOSS projects from the Sourceforge repository, which showed 
that product modularity has a positive effect on the number of project members and 
labour productivity as captured by the sum total of contributions to the project (i.e. 
problem reports, patches and feature requests). At first glance, this result seems to 
provide a large-scale empirical demonstration of the benefits of product modularity 
in FOSS development. Its validity, however, is undermined by the methodological 
set-up of the study. Measuring a project's modularity by counting its  number of 
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modules as Giuri et al. did is inadequate, for it does not take modules' degree of 
coupling (i.e. their interdependence) into account. The problem is that a modular 
system,  understood  in  the  limited  sense  of  a  system composed  of  smaller  sub-
systems,  is  not  necessarily  decomposable:  it  is  not  the  number of  modules  that 
determines the system's degree of modularity but their degree of coupling (Frenken 
2006, p. 303; Langlois 2002, p. 22). Giuri et al.'s  measurement of productivity is  
equally problematic for our purposes: it misses the point that the variable of interest 
is  the  returns  to  scale exhibited  by  the  production  process.  What  needs  to  be 
estimated is  not  the sum total  of  contributions to the project  but the extent to 
which an increase in inputs (i.e. contributors) results in a less than proportionate 
increase in outputs (i.e. contributions) (Banker 1984; Banker et al. 1994; Banker & 
Slaughter 1997; Robinson 1934). If the marginal returns of an additional unit of  
input are below the average returns, average productivity is decreasing – that is, the 
production  process  exhibits  decreasing  returns  on  scale.  Conversely,  increasing 
returns on scale prevail when average productivity is increasing. In short, the key 
variable is average productivity. To recap: nothing, based on their data, can be said 
about the effect of modularity on group size or productivity. What their results 
actually suggest is that products made up of a large number of components tend to 
be developed by larger groups than those with fewer components. 

For more than thirty years, product modularity has been employed by software 
engineers  as  'one  very  powerful  technique...to  reduce  diseconomies  of  scale  by 
reducing scale' (Boehm 1981, p. 194): 'for example, if a software project's size [is] in 
the region of  decreasing returns  to scale,  a manager  could choose to divide the 
project into several smaller projects in order to increase the productivity' (Banker et 
al.  1994,  p.  275).  The  cause  of  decreasing  returns  to  scale  is  well  known: 
communication path increases, complex interface requirements, project slack. As is 
their effect: productivity plummets, product development gets bogged down. Yet in 
spite  of  the  consensus  among  FOSS  theorists  and  practitioners  that  product 
modularity,  by  mitigating  the  adverse  effects  of  increasing  scale, increases 
productivity, empirical confirmation of this benefit is still wanting.  

CONCLUDING REMARKS
The literature makes a compelling argument: modular product design increases the 
potential number of individuals that could work on a project and has a positive 
effect on their labour productivity because it allows them to work independently of 
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the activities performed by one another in (different parts of) the project, with little 
or no need for central coordination. But there are gaps in the literature: these are 
concentrated not so much in the theory as in the want of empirical demonstration.  
Even  the  most  penetrating  works  (e.g.  MacCormack  et  al.  [2006])  are  not 
longitudinal but static. To capture forces of causality at work, we need to examine 
how these factors co-evolve over time. In order to study these relationships in a 
more rigorous manner, we need a case that covers a time span in which scale has 
increased dramatically. Moreover, the level of analysis adopted by prior work, in its 
overwhelming  majority,  is  that  of  the  project  as  a  monolithic  (i.e.  integrated) 
organisational entity: for instance, MacCormack et al. (2006) look at how Mozilla's 
degree of code modularity affects the aggregate number of project contributors. In 
consequence,  the  effect  on  the  level  of  the  modules  making  up  the  project  is 
insufficiently explored, though it is precisely at the level of modules – by enabling 
their  independent  development by autonomous groups of  developers  – that  the 
organisational impact of modularity is considered to be most significant. 

The next chapter describes the research methods we use in the present study to 
examine  how  modularity  affects  coordination  costs,  group  size  and  labour 
productivity in the context of FOSS development.  
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CHAPTER 3: RESEARCH METHODOLOGY

ANALYTICAL FRAMEWORK
As our review of the literature in chapter 2 demonstrates, what is missing from the 
literature is a longitudinal study covering a time-span in which scale has increased 
dramatically  so  that  the  relationship  between  product  modularity,  coordination 
costs, group size and productivity in the development process can be examined in a 
rigorous fashion.   

Research Design
The present dissertation adopts a case study research design, a research strategy 
used to understand dynamics within single settings (Eisenhardt 1989, p. 534). Case 
studies  can include single or multiple cases  and multiple levels  of  analysis  (Yin 
1984). In our case, we study a single case, the FreeBSD project, which we analyse 
both at the system-level (i.e. project-level) and component-level (i.e. module-level): 
thus, in addition to probing the effect of the degree of modularity of the entire 
FreeBSD codebase on the total number of developers with commit rights in the 
project and their labour productivity, we examine how the degree of modularity of 
individual  modules  affects  the number of  committers  contributing to  them and 
labour productivity specific to the development of these modules. 

It  is  customary for case studies  to use different data collection methods (e.g. 
archives, interviews, surveys, observations), resulting  in evidence that is qualitative 
or  quantitative  or  both  (Eisenhardt  1989).  For  this  study,  we  use  archives  of 
development  activity  logs  and  project  communications,  questionnaires  and 
observations, which provide us with both qualitative and quantitative results. In 
specific, we use quantitative methods to analyse archives of activity logs and project 
communications, complemented by qualitative evidence gleaned from observations, 
questionnaires and relevant literature.

Case  studies  can  serve  different  purposes:  they  can  be  used  to  describe  a 
phenomenon,  to  test  or  generate  theories  (Eisenhardt  1989).  Although  more 
frequently used to generate hypotheses, the strength of case studies is not limited to 
theory-building.  For  example,  Anderson  (1983)  used  a  single  case  study  –  the 
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Cuban missile crisis – to test which theory of decision making best explained the  
actual decision making process followed in that setting. Similarly, our motivation is 
to test a theory, according to which product modularity, by mitigating coordination 
costs  in  the  development  process  of  a  software  project,  increases  the  potential 
number of individuals that could work on the project and their labour productivity 
(because  they  can  work  independently  of  one  another  without  needing  to 
coordinate their activities). 

We  test  this  theory  in  the  context  of  FOSS  development  on  account  of  its 
uniqueness: for it is precisely the uniqueness of the empirical setting which 'permits 
particular  insights  that  allow one to  draw inferences  about  more normal  firms' 
(Siggelkow  2007,  p.  21).  Among  the  characteristics  setting  it  apart  from 
conventional organisations is that FOSS projects are neither profit-driven, nor are 
participants  bound  to  these  projects  by  a  contractual  employment  relationship. 
Consequently, the function of management is modified by the volunteer nature of 
participation,  for  as  participants  are  not  paid to  work  on FOSS,  command-and-
control is virtually non-existent in this environment: developers undertake tasks as 
their interests best dictate, that is to say, decision making labour (i.e. administrative 
tasks) is not decoupled from the labour of execution (i.e. performance tasks). The 
reason we study the role of modularity in this setting is because modularity is held 
to be required for the decentralised mode of FOSS development.

Individual  cases  suffice  to  test  and falsify a  general  theory,  thereby spurring 
further research and justifying more refined conceptualisations  (Siggelkow 2007). 
Compared to large-sample empirical works, a central advantage of this approach is 
that it allows for delving deeply into constructs, enabling thus the researcher to 
illustrate causal relationships more directly. That, of course, is fundamental in the 
context  of  longitudinal  research  like  ours  'that  tries  to  unravel  the  underlying 
dynamics of phenomena that play out over time' (Siggelkow 2007, p. 22).       

Object of investigation
The  object  of  our  investigation  is  the  interplay  between  product  modularity, 
coordination costs, group size and labour productivity in the development process 
of large FOSS projects. FOSS comprises a large and sprawling ecosystem of software 
projects. Empirically, we focus on the case of the FreeBSD project, for reasons we 
outline below. According to the research literature, the interrelation between these 
factors can be modelled as follows, where the direction of the arrows indicates the 
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hypothesised directionality of effects: 
 

Fig. 3.1: Conceptual model

However,  the  data  on  coordination  costs  we  were  able  to  collect  were  not 
sufficient to run a  regression analysis.20 As a  result,  the effect  of  modularity on 
coordination  costs  as  well  as  the  effect  of  coordination  costs  on  scale  (proxy-
measured by the number of active FreeBSD developers) and productivity could not 
be  tested  statistically.  Confronted  with  this  constraint,  we  set  out  to  test  these  
relations directly, as the research model in Fig. 3.2 below illustrates: 

Fig. 3.2: Empirical model

Specifically, the research model consists of the following hypotheses:

20 For an extensive discussion of this problem, see chapter 5.
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# Hypothesis

H1 Product modularity reduces coordination costs in FreeBSD

H2 Product  modularity  increases  the  potential  number  of 
contributors to FreeBSD

H2R An  increase  of  contributors  to  FreeBSD  results  in  an 
increase of modularity

H3 Product  modularity  has  a  positive  effect  on  labour 
productivity in FreeBSD

H4 An  increase  of  contributors  to  FreeBSD  has  a  negative 
effect on labour productivity

Level of analysis
The analysis presented in this study draws upon both qualitative and quantitative 
results. In line with prior studies of modularity in FOSS development (e.g. Baldwin 
& Clark 2006b; MacCormack  et  al.  2006),  we carry out a qualitative analysis  of 
descriptive  statistics  based  on  activity  logs  collected  from  FreeBSD's  software 
repository to examine how the  degree of modularity of the codebase as a whole 
relates  to  the total  number of  committers  working on the project,  their  labour 
productivity and coordination costs in the project. In addition – and this is where 
our study deviates from prior works that focused exclusively on the relationship 
between product modularity, group size and productivity at the level of the entire 
project – we perform a quantitative analysis of the hypotheses at the level of the 
components (modules) making up FreeBSD because it is only at that level that the 
effect  of  the  degree  of  interdependence  of  the  modules  on  the  number  of 
contributors and their productivity can be rigorously examined. In specific, we use 
regression analyses to test how the degree of modularity of the individual modules 
making  up  FreeBSD  affects  the  number  of  committers  contributing  to  these 
modules,  their  labour  productivity  and  the  coordination  costs  specific  to  the 
development of these modules.  To sum up, we look into the hypotheses  at two 
levels: the qualitative component of our analysis examines the hypotheses at the 
project-level, while the quantitative analysis focuses on the module-level.   

The regression analyses that comprise the quantitative analysis are described in 
the section  Statistical analysis towards the end of this chapter.  The  indicators of 
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modularity, coordination costs, group size and productivity used in the analysis are 
described  in  the  sections  Measuring  modularity,  Measuring  coordination  costs, 
Measuring developers group size and Measuring labour productivity respectively.

WHY THE FREEBSD PROJECT?
FreeBSD  is  a  Unix-like  operating  system  derived  from  the  Berkeley  Software 
Distribution (BSD), the version of Unix developed at the University of California, 
Berkeley.  Its  development begun in 1992 when 386BSD split  into two versions, 
FreeBSD and NetBSD, as a result of developers' frustration with the pace at which 
386BSD incorporated  patches.  Since,  FreeBSD has  been established as  the most 
popular  BSD-descendant  with  a  proven  track  record  in  mission-critical 
deployments.  Nowadays,  the project  thrives  on the volunteer  contributions of a 
community of developers spread the world over.21

Of all FOSS projects, why did we choose FreeBSD? Our selection criteria were 
the following: a project characterised by: 

(a) large scale (as reflected in a large base of developers);
(b) a modular product architecture and 
(c) available logs of development activity. 

The first two criteria are derived from the literature review: we wanted to find a 
product which is (or held to be) modular and which is developed by a large group 
of developers. The last criterion is purely methodological: empirical data had to be 
accessible too. FreeBSD met all these criteria: 

(a) it  is  currently  developed by a  group  of  about  four  hundred individuals 
(known as committers) vested with the right to integrate changes in the 
project's code repository;

(b) the software is partitioned in different modules22 and  
(c) it  has  publicly-accessible logs  of its  development activity dating back to 

21 For an elaborate description of the FreeBSD project, see chapter 4. 
22 FreeBSD can be characterised as modular in two ways.  First,  on account of its modular code 

architecture (i.e.  independently of its degree of decomposability,  the product  is partitioned in  
distinct modules); and second, it is modular from the end-user point of view, as it is up to the 
users  to  decide  which  modules  of  the  operating  system to  load  at  runtime  according  to  the  
functionality they need.     
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1994.    
     

The next four sections elaborate on the methods we use in this study to measure 
modularity, coordination costs, group size and productivity through activity logs 
collected from FreeBSD's software repositories.    

MEASURING MODULARITY
The study of modularity formally begins with Parnas' (1972) design principle of 
information  hiding as  the  definitive  criterion  for  decomposing  a  system  into 
modules.  The concept  was  elaborated by subsequent  research,  which developed 
metrics  to  assess  the  degree  of  coupling between  modules  and  the  degree  of 
cohesion within modules (Dhama 1995; Selby & Basili 1988; Stevens et al. 1974). In 
general, attempts to measure software modularity focus on the level of coupling 
between system components, following either of the following two directions. They 
either analyse specific types of dependencies between components, as for example 
the number of function calls (Banker & Slaughter 2000; MacCormack et al. 2006; 
Rusovan et al. 2005) or global variables (Feitelson et al. 2007; Schach et al. 2002; Yu 
et al.  2006).  Or, alternatively, they infer the existence of dependencies between 
components by assessing whether they tend to be modified at the same time. In the 
present study, modularity is estimated by analysing function call dependencies. 

Studying modularity as function call dependencies typically revolves around the 
application of a Design Structure Matrix (DSM),23 a  system modelling technique 
widely used in software engineering to outline the structure of a design based on 
the  information  exchange  and  dependency  patterns  between  its  constituent 
elements.  The  technique  has  been  used  in  prior  research  to  compare  different 
architectures (Sosa et al. 2007) and assess the degree to which design interfaces and 
team interactions are aligned (Sosa et al. 2003, 2004). The application of the DSM 
begins with specifying the unit of analysis. In characterising software structure, that 
can be the directory level, which corresponds to a group of source files pertaining 
to a specific subsystem; the source file, which corresponds to a set of programming 
instructions  performing  a  related  set  of  functions;  or  the  function level,  which 
corresponds to a set of programming instructions performing a specific task. Our 
analysis focuses on the source file level for the following reasons. First, the tools 

23 DSM also stands for Dependency Structure Matrix – we use both terms interchangeably.  The 
technique was pioneered in the early 1980s by Stewart (1981). 
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used by developers for version control (e.g. CVS) use the source file as the unit of 
analysis: that is to say, developers keep track of the software system's development  
by examining changes at the source file level. Second, source files are the locus of  
development, as tasks and responsibilities are commonly allocated to developers at 
the source file level. Source files, therefore, constitute a logical unit of analysis for 
studies of software evolution (MacCormack et al. 2006). 

There are several  types of dependencies  between source files.  In the present 
study we focus on one important dependency type: the  function call. A Function 
Call is an instruction requesting the execution of a task. If the function called is not  
located  within  the source file  where the request  originates,  then a  dependency 
exists  between two source  files.  For  example,  if  FunctionA in  SourceFile1  calls 
FunctionB  in  SourceFile2,  then  SourceFile1  depends  on  SourceFile2.  The 
dependency is marked in location (1,2) in the DSM.24 To capture function calls, we 
input a product's source code into a tool called Call Graph Extractor. Function calls 
can  be  extracted  statically  or  dynamically.  Here  we  use  a  static  call  extractor, 
cscope,25 because it uses source code as input, does not depend on the state of the 
software and captures its structure from the programmer's perspective. 

Fig. 3.3: The directory structure and architectural view of Linux 
(Source: MacCormack et al. 2006)

The function call dependencies thus extracted populate the DSM, which can be 
visually examined from the software system's architectural view. The architectural 

24 For DSM entries, the standard convention is used (row number, column number).
25 Cscope is available online at <http://cscope.sourceforge.net>. In addition, we wrote custom Perl 

scripts and a small C program to extend the functionality offered by Cscope.  
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view of a DSM groups each source file into a series of nested clusters defined by the 
directory  structure,  with  boxes  drawn  around  each  successive  layer  in  the 
hierarchy.  The result  is  a  map of  dependencies,  organised by the programmer's 
perception of the design. For the purpose of illustration, Fig. 3.3 above depicts the 
Directory  Structure  (left)  and  Architectural  View  (right)  for  Linux.  In  the 
architectural view, each dot represents a dependency between two source files. 

To assess the impact of modularity at the level  of  the components (modules) 
making  up  FreeBSD,  we  develop  three  empirical  proxies  for  the  degree  of 
modularity: 

(1) component visibility (as captured by the propagation cost metric); 
(2) the number of external dependencies of components and
(3) the ratio of internal dependencies to external dependencies of components 

(referred to as integrality index). We discuss each in more detail below.

First, we measure visibility (Sharman & Yassine 2004) by assessing the number 
of  both  direct  and  indirect  dependencies  that  a  module  has. We  characterise 
therefore the structure of a design by measuring the level of coupling among its 
components based on the degree to which a change in a system element (i.e. file) 
causes  a  potential  change  in  other  system  elements  directly  or  indirectly  (i.e. 
through a chain of dependencies across them). 

Fig. 3.4: Example system in graphical and DSM form

To illustrate, consider the hypothetical system depicted in the form of a diagram 
and a DSM in Fig.  3.4 above.  We see that element A depends on (that  is,  calls 
functions in) elements B and C, hence a change in C could have a direct effect on A. 
In turn, element C depends on E, hence a change in E could have a direct effect on 
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C but also an indirect effect on element A with a path length of two. Likewise, a  
change in F could have a direct effect on E and an indirect effect on both C and A 
with path lengths of two and three respectively (In this system there are no indirect 
dependencies between elements for path lengths of four or more).

The calculation of external dependencies is derived directly from the DSM. For 
example, element A has two direct and three indirect external dependencies. To 
assess  the visibility26 of  any  one  element,  we  use  the  technique  of  matrix 
multiplication: we raise the DSM to successive powers of N. Then we sum these  
matrices together to derive the visibility matrix V, which shows the dependencies, 
both direct and indirect, existing for all possible path lengths.27

Fig. 3.5: The derivation of the visibility matrix

The visibility matrix displays the dependencies between all system elements for 
all possible path lengths up to the maximum – determined by the size of the DSM 
(denoted by N). The visibility measures are derived directly from it. To measure the 
(direct and indirect) dependencies that flow out of a component, we calculate the 
Fan-Out Visibility by summing along the rows of the visibility matrix and dividing 
by the total number of elements. The higher the fan-out visibility of an element the 
greater  the  number  of  elements  it  depends  on.  Visibility  can  be  alternatively 
measured by calculating the  Fan-In Visibility, which measures the dependencies 
that flow into a component and which is derived by summing down the columns of 
the visibility matrix and dividing by the total number of elements. The higher the 

26 I.e. the more visible an element is in the system the greater the number of elements that depend on  
it.

27 The visibility matrix is referred to elsewhere (e.g., in Sharman and Yassine [2004] and Warfield  
[1973]) as reachability matrix.
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Fan-In Visibility of an element the greater the number of elements that depend on 
it. To continue with the same example as before, element A has a Fan-Out visibility 
of 6/6th (or 100%), meaning that it depends on all other system elements, and a Fan-
In Visibility of 1/6th, indicating that it is visible only to itself, meaning that no other 
elements depend on it.  In the present study, we measured visibility by calculating 
fan-out visibility.28 

To summarise these data  for  each module, we compute the density of  every 
module's visibility matrix (i.e. the DSM multiplied by itself to fill in all the indirect 
dependencies), referred to as propagation cost – a metric which intuitively captures 
the percentage of files that are likely to be affected on average when a change is  
made  to  a  randomly selected  file  (MacCormack  et  al.  2006;  Milev  et  al.  2009).  
Specifically,  the  propagation  cost  computes  the  average  Fan-Out  and  Fan-In 
Visibility  of  all  elements  (which  are  identical,  as  for  every  fan-out  there  is  a 
corresponding fan-in). In our example, the propagation cost can be calculated from 
Fan-Out  Visibility  as  (6+2+3+1+2+1)/6*6=42%  or  by  using  Fan-In  Visibility  as 
(1+2+2+3+3+4)/6*6=42%. 

In  addition  to  calculating  each  module's  propagation  cost,  we  assess  the 
propagation cost of FreeBSD as a whole, which we use as an indicator of modularity  
for  the aggregate development process  of the full  product.  Considering that  the 
individual development of modules is embedded within the development process of 
the entire project, the latter indicator allows us to examine the extent to which the 
dynamic of development of individual modules is affected by the complexity of the 
broader  production  environment.  Another  proxy  we  use  for  modularity  at  the 
project-level is the ratio of external dependencies to the number of modules making 
up  the  software.  Because  external  dependencies  increase  as  of  logical  necessity 
when new modules are added to the software product,29 examining their growth in 

28 It is open to debate which of the two methods of computing visibility – fan-in or fan-out visibility 
– results in a more robust indicator of the extent of coupling of product components. A recent 
empirical  study by MacCormack  et  al.  (2008b,  p.  20) showed that  'fan-in  visibility  is  more 
dominant [than fan-out visibility] in explaining survival' of modules across successive versions of 
the software, which suggests that fan-in visibility is a more reliable indicator. However, other 
recent  works  have  found  that  estimating  visibility  through  fan-out  yields  results  of  a  higher 
explanatory power: for example, von Krogh et al.  (2009, p. 26) showed that 'the effect of in-
degrees [number of components that use the focal component] is tiny compared to the effect that 
out-degrees [number of components used by the focal component] exert, trumping it by a factor 
of about 20'.

29 In spite of the moderating effect of modularity, the addition of new modules to a software product 
is bound to result in new external dependencies, as new modules would still need to interact to  
some extent with (viz. use functionality embedded in) pre-existing modules. 
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relation to that of modules makes for a more refined indicator of modularity than 
just measuring the number of external dependencies independently of the number 
of  modules  contained  in  the  product.  The  metric  is  also  theoretically  derived, 
namely from Simon's  (1962)  theorisation of  complexity as  characterised by two 
factors:  the  number  of  parts  in  a  system  and  the  interconnections  or 
interdependencies  between these parts.  Simon (1962,  p.  468) defined a  complex 
system as follows: 

By  a  complex  system  I  mean  one  made  up  of  a  large 
number of parts that interact in a nonsimple way. In such 
systems, the whole is more than the sum of the parts, not 
in an ultimate, metaphysical sense, but in the important 
pragmatic sense that, given the properties of the parts and 
the laws of their interaction, it is not a trivial matter to 
infer the properties of the whole. 

In discussing how complex systems can be described, Simon treats the concept 
of complexity as synonymous to task interdependence: postulating, that is, that the 
complexity of a problem-solving process can be estimated by measuring the degree 
of interdependence between the distinct tasks comprising the process. Following 
conceptually  Simon,  we  use  the  ratio  of  external  dependencies  to  modules  to 
capture the degree of component (module) interdependence.30 

Component interdependence = external dependencies / modules

Further theoretical grounding for using this metric to capture interdependence 
comes  from the  seminal  work  of  Kauffman  and  Levine  (1987)  on  performance 
measurement in complex systems. Their NK model counts the number of modules 
in  a  system  (N)  and  measures  the  degree  of  interaction  (i.e.  interdependence) 
among modules (K): so that the lower K is compared to N, the more independent 
are the modules comprising the system. Conversely, when K is high compared to N, 
modifying a module is likely to affect other modules, often in dysfunctional ways, 

30 It  is  evident  that  by the same logic,  the ratio  of external  dependencies  to  modules  could be 
employed as an indicator of complexity for the development process of the project as a whole. By 
following  Simon's  logic  of  description,  in  fact,  task interdependence and complexity are  but  
different  names  for  describing  the  same  relation  of  interdependence  (among  the  constituent 
tasks/stages of a process or the components of a system).  
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in  which  case  the  system  is  non-decomposable.31 Our  measure  of  component 
interdependence is  operationalised in the same manner:  a  low ratio  of  external 
dependencies to modules indicates a modular system and vice versa.  

Besides the propagation cost and the number of external dependencies, we use 
one more proxy for modularity at the component level: that is the ratio of external 
dependencies to internal dependencies, which we call integrality index. 

Integrality  index  =  external  dependencies  /  internal  dependencies

The rationale for using this ratio as a measure of modularity is  derived from 
theory:  according  to  Parnas  (1972),  the  definitive  criterion  for  decomposing  a 
system  into  modules  is  encapsulation  (i.e.  information  hiding),  meaning  that 
interactions  among  system  components  are  to  be  eliminated  through  their 
encapsulation within modules. As Sharman and Yassine (2004, p. 40) explain, the 
goal of modularising a system is to find modules or clusters of system elements

that are mutually exclusive or minimally interacting. This 
process  is  referred  to  as  clustering.  In  other  words, 
clusters  contain  most,  if  not  all,  of  the  interactions 
internally and the interactions or links between separate 
clusters are eliminated or minimized. In which case, the 
blocks  become  analogous  to  team  formations  or 
independent  modules  of  a  system  (i.e.  product 
architecture).     

To use Simon's (1962, p. 477) formulation, the act of decomposing a system into 
modules is intended to have 

the effect  of  separating the high-frequency dynamics  – 
involving the internal structure of the components – from 
the  low  frequency  dynamics  –  involving  interaction 
among components. 

31  Originally proposed for the study of biological systems' evolution, the NK model has since been  
extensively applied to the analysis of technological and social systems. For three recent works of 
organisation theory using the NK model or one of its variants, see Brusoni et al. (2007), Ethiraj  
and Levinthal (2004) and Siggelkow and Levinthal (2003). 
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In short, a successful modularisation implies that interactions (i.e. dependencies) 
have been localised into modules.32 It follows directly from this description of the 
operational logic of modularity that a characteristic of modular systems is that the 
internal  dependencies  of  modules  (i.e.  interactions within modules)  well  exceed 
their external dependencies (i.e. interactions among modules). The opposite would 
indicate  a  non-modular  (i.e.  monolithic)  system. Hence,  the higher  the ratio of 
external dependencies to internal dependencies the less modular the system. That is 
why we named the metric integrality index: because the higher the ratio, the more 
monolithic (integrated) the system. And conversely, the lower the ratio of external  
dependencies to internal dependencies the more modular the system.   

MEASURING COORDINATION COSTS
Although prior work in organisation theory has dealt with the issue of coordination 
costs  in  environments  characterised  by  modular  product  architectures,  it  has 
proven  to  be  very  difficult  to  measure  the  effect  on  coordination  costs 
quantitatively.  Indicatively,  in  their  study  of  the  introduction  of  a  modular 
production process in a tyre manufacturer, Brusoni and Prencipe (2006) interpret 
the frequent occurrence of communication flows across different departments as an 
indicator  of  high  coordination  costs.  Similarly,  in  examining  whether  product 
modularity  moderates  the  need  for  central  coordination  across  a  network  of 
organisations engaged in the construction of chemical plants, the emergence of a 
new  actor  on  the  network  –  personified  by  systems  integrators  –  is  taken  for 
evidence of high coordination costs (Brusoni 2005). Although such indicators (as 
the  communication  linkages  among  distinct  functional  departments  of  an 
organisation  or  an  actor  taking  on  the  specialist  role  of  coordinating  an  inter-
organisational network) are not without scientific merit, their imperviousness to 
quantification  limits  decisively  their  explanatory  power.  Despite  the  need  for 
quantitative measures of coordination costs,  they are by and large missing from 
prior  works  in  this  research  field.  To  our  knowledge,  only  two  studies  have 
attempted  to  quantify  coordination  costs  in  a  software  development  project  by 
tracing communication  paths  among  developers  over  time  and  weighting  a 
communication  path  between  any  two  developers  according  to  the  number  of 
source  code  files  on  which  they  collaborated  (Adams  et  al.  2009;  Capiluppi  & 

32 For a more elaborate discussion of the principle of interaction locality (also known as dependency 
locality), see Yu et al. (2009) and Yu and Ramaswamy (2009).
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Adams 2009). 
In  the present  study,  we measure coordination costs  through the volume of 

communication among developers in the project. In specific, we count the number 
of  emails  sent  over  mailing  lists  used  in  the  project  for  coordinating  the 
development process. For the task of measuring coordination costs, our choice of 
metrics and data sources is dictated by project-specific considerations. As mailing 
lists  constitute  the  primary  communication  fora  in  FreeBSD  (FreeBSD  2011b; 
Watson 2006), the number of emails exchanged by developers is the most direct 
measure of coordination costs in this setting. A minor complication is that, as the 
project uses a multitude of mailing lists,33 each geared to different aspects of the 
project,  identifying the one(s)  centred on coordinating development processes is 
crucial. By reviewing the relevant literature, we were able to identify the freebsd-
current mailing  list  as  the  central  forum for  coordination  issues  related  to  the 
current branch. According to FreeBSD researchers Holck and Jørgensen (2004), 

For developers  working on  CURRENT, the mailing list 
freebsd-current is particularly important, as this is where 
all  announcements  of  important  changes  to  CURRENT 
will  be  given.  Also,  problems  in  building  or  running 
CURRENT will be posted to and discussed in this forum; 
these seem to account for around 75% of the list threads.

The  formal  description  of  the  freebsd-current mailing  list  by  the  FreeBSD 
(2011b) project is as follows:  

This is the mailing list for users of FreeBSD-CURRENT. It 
includes  warnings  about  new  features  coming  out  in 
-CURRENT that will affect the users, and instructions on 
steps that must be taken to remain -CURRENT. Anyone 
running “CURRENT” must subscribe to this list. This is a 
technical mailing list for which strictly technical content 
is expected.

To  make  sure  that  freebsd-current is  in  fact  centred  on  coordinating 

33 As  of  August  2011,  there  are  144  public  mailing  lists  in  use 
(<http://lists.freebsd.org/mailman/listinfo>) 
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development processes, we selected in random 100 emails sent over the list during a 
time-period of five years (from March 2003 to March 2008).  Their majority (i.e. 
approx. 70%) relates to coordination costs triggered by changes in the product such 
as,  for  example,  integration  breakdowns  ('broken  build')  caused  by  product 
modifications; problem-reports and suggested problem-solutions (i.e. bug-fixes) that 
need to be reviewed and tested by more developers before they can be incorporated 
into the (official version of the) product; or modifications rendered necessary or 
desirable  by  changes  in  the  broader  technological  environment  such  as  the 
development of new hardware. To illustrate, consider the four emails below, which 
appertain to: (i) a problem-report; (ii) another problem-report; (iv) a fix ('patch') 
designed  to  solve  a  problem,  which  needs  to  be  tested  and  reviewed  by  more 
developers  and  (iii)  yet  another  problem-report,  which,  to  be  fixed,  requires  
coordination with the group working on the usb module.    

Subject: pear broken on current.
Sent by: eculp at bafirst.com  eculp at bafirst.com   
Date: Sat Jun 4 10:51:02 GMT 2005 
In /usr/src/UPDATING, there was a change:

20050528: Kernel parsing of extra options on '#!' first 
lines of shell scripts has changed.

and documented at: http://people.freebsd.org/~gad/Updating-
20050528.txt

After a week of rebuilding, changing versions of pear, php, 
apache and all other  dependencies and looking everywhere 
except at this change, Finally, thanks to Manfred Antar 
<null at pozo.com> and Thierry Thomas <thierry at 
freebsd.org>, I was able to understand that this was my 
problem with pear but I still don't know what the solution 
is. I assume that the port will need to be changed or am I 
missing something?

Thanks,
ed
P.S. I have submitted a PR
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Subject: lockmgr panic on shutdown
Sent by: Doug White  dwhite at gumbysoft.com 
Date: Sat Nov 1 17:25:27 PST 2003 
I can confirm the lockmgr panic on shutdown reported by 
someone else earlier (whose message I mistakenly deleted).

It looks like swapper is trying to undo a lock from 
pagedaemon and runs into trouble. This is probably related 
to the Giant pushdown of vm_pageout() that alc did last 
week.

I'm building with INVARIANTS to see if that will catch more 
info.  Will report back soon.

Subject: usbd not opening all usb busses for event watching.
Sent by: John Baldwin jhb at FreeBSD.org  
Date: Mon Jun 20 20:49:43 GMT 2005 
On Thursday 26 May 2005 12:42 am, Darren Pilgrim wrote:
> I appear to be running up against the hard-coded limit of 
four usb hubs in 
> usbd.  The problems were devices not attaching properly. 
The machines in
> question are a new notebook with four USB 2.0 ports and 
an older desktop
> with onboard USB 1.1 and a USB 2.0 card.  The notebook 
produces 5 hubs and
> the desktop produces 7.
>
> The problems disappeared after I increased MAXUSBDEV to 
match the number of
> hubs present.  This isn't really a bug, so I wasn't sure 
if send-pr was
> appropriate.  Should I file a PR for this?

Actually, it does sound like a bug. :)  I would file a PR 
and then post a message with the PR to usb at FreeBSD.org 
as that is the list of folks who look after the USB code.
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Subject: ULE Interactivity perf patch
Sent by: Jeff Roberson jroberson at chesapeake.net 
Date: Fri Dec 19 06:30:11 PST 2003 
I realized a pitfal in the way that I'm doing slice 
assignment for interactive tasks.  I'd like to have as many 
people test this as possible, in case there are unintended 
consequences.  What this patch does is allow interactive 
tasks to have longer time-slices so that they may be more 
efficient.

This patch is intended to fix the poor performance of some 
interactive processes while under high load, especially 
high load with other interactive tasks present.

http://www.chesapeake.net/~jroberson/interact.diff

Thanks,
Jeff

As  the  above  emails  demonstrate  that  the  communication  occurring  on  the 
mailing list  is  related to the coordination of  tasks in the FreeBSD development 
process, we capture total coordination costs in the project through the indicator of 
the  volume  of  emails  sent  over  the  freebsd-current mailing  list.34 For  the 
quantitative  analysis,  we  capture  the  coordination  costs  involved  in  the 
development of each module through the indicator of the volume of emails sent 
over  the mailing  lists  centred  on their  development.  To  illustrate,  the  freebsd-
firewire mailing  list  focuses  on  the  development  of  the  firewire module,35 the 
freebsd-usb mailing list focuses on the usb module36 and so forth. 

MEASURING DEVELOPERS GROUP SIZE
Estimating how many individuals contribute to the development of a FOSS project 
like  FreeBSD  is  rather  straightforward,  though  definitely  more  complicated  in 
comparison with a corporate software development environment where detailed 

34 The  freebsd-current mailing  list  is  archived  online  at 
<http://lists.freebsd.org/mailman/listinfo/freebsd-current>

35 The  freebsd-firewire mailing  list  is  archived  online  at 
<http://lists.freebsd.org/mailman/listinfo/freebsd-firewire>

36 The  freebsd-usb mailing  list  is  archived  online  at 
<http://lists.freebsd.org/mailman/listinfo/freebsd-usb>
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information typically is  readily  available  about  the exact  number  of  individuals 
working  on  a  project,  their  degree  of  participation  (i.e.  full-time  or  part-time 
employment) and the nature of the tasks assigned to every one of them, that is, the  
division  of  labour  in  the  software  project.  By  contrast,  it  follows  from  the 
predominantly volunteer and fluid character of participation in FOSS projects that a 
completely different approach is required.  

A  method  used  in  several  studies  to  estimate  the  number  of  individuals 
contributing to a FOSS project is by examining so called credit files (e.g. Bowman 
1998; Koren 2006; Moon & Sproull 2000; Tuomi 2004). It is a common trait of FOSS 
projects that contributions are credited – for instance, in a credit file – as prescribed 
by community etiquette. The method we use in the present study is similar. In the  
FreeBSD project, all developers vested with the privilege to commit changes to the 
code repository – known as  committers –  are  listed in a  file,  which is  updated 
whenever a person is granted commit privileges, becoming thus a committer, or 
when a person's commit rights are revoked.37 Therefore, as the credit file reflects 
changes  in  the composition of  the  committers  group,  we count  the number  of  
individuals listed in the file in order to estimate the number of committers in the 
project.  In  addition  to  using  the  credit  file,  we  measure  the  number  of  active  
committers, that is, those committers who practised their commit rights by actually 
making changes  to  the codebase,  through activity  logs  in  the  project's  software 
repository (i.e. CVS). In that way, by subtracting the number of active committers 
from the total number of committers listed in the credit file, we can measure the 
extent  of  free-riding  within  the  group,  thus  allowing  us  to  further  refine  our 
measurement of group size.

Contrasting the number of committers listed in the credit file with the number 
of active committers over time (in Fig. 3.6 below) shows that the extent to which 
free-riding occurs has not increased with the passage of time due to the expansion 
of the group (indicatively, according to the credit file, the number of committers 
increased  from  105  in  1997  to  224  in  2007).  In  other  words,  the  historical 
enlargement of the committers group has not resulted in an increase in the number 
of free-riders (as predicted by Olsen's [2002] 'size principle'). In fact, by looking at  
the ratio of active committers to all committers in Fig. 3.7 below, we see that the  
proportion of free-riders in the group decreases over time.

37 The  file  listing  FreeBSD  committers  is  accessible  at 
<http://www.freebsd.org/cgi/cvsweb.cgi/CVSROOT-src/access>.
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Fig. 3.6: Free-riding in FreeBSD committers group

Fig. 3.7: Ratio of active committers to all committers
   

The advantage of our measurement method, compared to other alternatives, as 
Ghosh (2003) explains, is that it permits    

a  more  detailed  and  less  biased  (but  also  less  formal) 
method  of  author  attribution  [which]  is  used  by 
developers  themselves  during the development  process. 
Either through a version-control system, such as CVS or 
Bitkeeper,  or  simply  through  a  plain-text  "ChangeLog" 
file, changes are recorded between progressive versions of 
a software application. Each change is noted, usually with 
some identification of the person making the change — 
in the case of a version control system this identification, 
together with the date, time and size of change is more or 
less automatically recorded.
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On the other hand, our method can be criticised on the grounds that  

most projects limit to a small number the people who can 
actually "commit" changes, and it is their names that are 
recorded, while the names of the actual authors of such 
changes may or may not be (Ghosh 2003).

The thrust of this criticism is that large FOSS projects like FreeBSD thrive on the 
contributions  of  a  multitude  of  individuals,  not  all  of  whom have  the  right  to 
integrate  changes to  the project  repository.  Thus,  those who do – the so-called 
committers – are responsible for reviewing and committing the modifications sent 
them by those without commit rights. But as the repository only logs the names of  
the committers rather than the originating contributors, some committers might 
appear  to  be  considerably  more  active  than they really are,  given that  a  single 
person  (with  commit  rights)  might  be  credited  for  contributions  originating  in 
others. The problem, remarks Ghosh, is that basing an analysis of authorship on 
activity  logs  from  project  repositories  could  lead  to  measurement  errors  and 
ultimately to erroneous conclusions. Ghosh is right to draw attention to distortion 
effects that the analysis of activity logs from software repositories might entail. Yet 
author attribution is not a problem that admits of no solution. It would have been a 
serious problem, had the right to commit been treated as a privilege to be defended 
against newcomers. But that is not so. Granting commit rights is an integral part of 
the  process  by  which  one  joins  a  FOSS  project  and  advances  from peripheral, 
though necessary, activities such as problem-reporting and problem-fixing to the 
development of new functionality. As Michael Lucas (2000), FreeBSD committer, 
puts it: 'if you submit enough useful and correct PRs [that is, problem-reports with 
fixes attached], eventually some committer will get sick of taking care of your work 
and will ask you if you want to be able to commit them yourself'. Lucas' description 
of the process by which commit rights are granted conveys a crucial point: commit  
rights are granted to those who make more than just occasional contributions to the 
project. It follows from the character of the recruitment process that committers are 
engaged  extensively  in  code  development  as  well  as  that  anyone  making  a 
substantial contribution is given commit rights. Consequently, it is safe to assume 
that  there  are  very  few,  if  any,  high-contribution  participants  in  the  FreeBSD 
project outside of the committers group. That, of course, suffices for our primary 
purpose, which is to examine how the work of regular contributors is affected by 
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modular product design. 

MEASURING LABOUR PRODUCTIVITY
Productivity in software development projects has been traditionally measured, as 
in most  industries, as the amount of output of the production process per unit of  
input used.38 Characteristically,  the IEEE (1993) defines software productivity as 
'the ratio of units of output divided by units of input'. In this context, software size 
is typically used as the output of the production process and effort as the input. 
Thus, by measuring the size of the produced software and the effort required to 
produce it, productivity can be computed as follows: 

Productivity = Size / Effort (1)

All models by which productivity in software projects is measured are based on 
this  definition,  though somewhat  different  variants  of  the above  equation have 
been used in studies attempting to capture productivity from different angles. 39 To 
measure  size,  the  most  commonly  used  metric  is  source  lines-of-code  (LOC) 
(Boehm 1981; den Besten et al. 2006; Blackburn & Scudder 1996; Blackburn et al. 
2006; Curtis et al.  1988; Spinellis  2006). Effort is  typically measured in working 
hours, days, months or years expended in the production of the software. In that 
way, productivity can be computed as the number of LOC divided by some unit of 
labour time (Boehm 1987), as for example:

• LOC per man-hour (Spinellis 2006; Walton & Felix 1977)
• LOC per man-month (Blackburn & Scudder 1996)
• LOC per total man-months (Blackburn & Scudder 1996) 
• LOC per man-years (Cain & McCrindle 2002; Cusumano & Kemerer 1990)

However, in FOSS projects it is impossible to measure effort directly, as in that 
setting the volunteer (i.e. unwaged) character of participation makes it impossible 
to estimate directly the number of working hours expended by contributors. For 

38 For  an  informative  introduction  to  the  topic  based  on  a  summary  of  software  productivity 
measurement studies, see Scacchi (1995).

39 For  example,  functional  productivity has  been  calculated  as  the  amount  of  functionality  (in 
function points) divided by effort, and economic productivity as the value (exchange-value) of a  
unit of product divided by the production cost per unit (in wages paid). See Card (2006).
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that  reason,  studies  of  FOSS  development  have  used  LOC  as  a  measure  of 
development effort  and activity (Mockus et  al.  2002; Koch 2004, 2008; Spinellis 
2006). Another proxy of development effort used in studies of FOSS projects is the  
volume of changes made to the codebase, that is, the number of code contributions 
to the project  (den Besten et al.  2006; Dinh-Trong & Bieman 2005; Koch 2004; 
Michlmayr et al. 2007; Mockus et al. 2002; Spinellis 2006). Besides LOC and code 
contributions, an alternative method of measuring size, effort and productivity is 
through  function  points  (Albrecht  &  Gaffney  1983;  Banker  &  Slaughter  1997; 
Blackburn  et  al.  2006;  Kemerer  1993;  Koch  2008;  Perry  1986).  For  example, 
Blackburn  et  al.  (2006) use the number of function points  per man-month as  a 
measure of  productivity.  Size  in KB has  been proposed as  yet  another  measure 
(Ghosh  &  David  2003).  Unfortunately,  no  metric  is  flawless.  There  has  been 
extensive criticism of LOC as a measure of productivity on account of its tendency 
to emphasise larger rather than efficient or high-quality products. Simply put, that  
one software program is made up of more LOC than another might be an indication 
of  more  verbose  code  rather  than  of  more  functionality  or  a  higher  level  of 
sophistication (Jones 1978; McAllister 2011). The same criticism applies to KB while 
the function points method has been criticised for being complicated to estimate 
and dependent on the analyst's subjective judgement of the importance of various 
complexity factors (U.S.A. Air Force Dept. 2000). A practical, though admittedly 
rough, solution to this problem is to use more than just one measure of size so as to  
be able to identify potential inconsistencies or contradictions in the results those 
metrics yield (Card 2006; see also Kitchenham & Mendes 2004).

In the present study, we use three alternative measures of production output: 
the number of a) LOC, b) KB, and c) commits (i.e. code contributions). Because we 
are interested in the returns to scale exhibited by the production process, that is, in 
the effect on productivity of adding more developers to a FOSS project (and because 
in that setting the time spent by contributors cannot be estimated directly), we use 
the number of active committers as an indicator of input. Thus, this metric captures  
average labour productivity in the project, which we calculate as follows:     

Average productivity = LOC / committers (2) 
Average Productivity = KB / committers (3)
Average Productivity = Commits / committers (4) 

Summing up, our method could be criticised for not including function points in 
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its repertoire of metrics. But we do not consider that to be a grave deficiency. For as 
Boehm (1987) concluded in his evaluation of various different metrics, LOC may 
not be a perfect measure of development effort and productivity, yet none of the 
other measures is fundamentally more informative.

The next  section explains the derivation of the statistical  analysis framework 
from the research model synthesising our hypotheses. 

STATISTICAL ANALYSIS
The quantitative  analysis  is  performed by means of  regression analyses.  Fig.  3.2 
depicts the research model, which is summed up in the following hypotheses:

Fig. 3.2: Research model

# Hypothesis

H1 Product modularity reduces coordination costs in FreeBSD

H2 Product  modularity  increases  the  potential  number  of 
contributors to FreeBSD

H2R An  increase  of  contributors  to  FreeBSD  results  in  an 
increase of modularity
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H3 Product  modularity  has  a  positive  effect  on  labour 
productivity in FreeBSD

H4 An  increase  of  contributors  to  FreeBSD  has  a  negative 
effect on labour productivity

To test the hypotheses, we use panel data (also known as longitudinal or cross-
sectional  time-series  data)  collected  from  the  FreeBSD  project's  software 
repositories. The reason we turned to longitudinal data is because we are interested 
in  examining  the  effect  of  modularity  on  coordination  costs,  group  size  and 
productivity over time. This evolutionary approach is designed to capture the effect 
of scale on the dynamic of the development process, which can only be probed 
through the perspective of time, that is, over the course of development. For that 
reason,  we  'partitioned'  FreeBSD's  development  process  (reconstructed  through 
activity  logs  collected  from  FreeBSD's  software  repository)  into  fourteen 
consecutive years of development activity from 1994 until 2008. Thus, our analysis 
is based on yearly measurements: we estimate the degree of modularity per year 
(i.e.  modularity  in  year  1,  year  2,..,year  14),  coordination  costs  per  year  (i.e.  
coordination costs in year 1, year 2,..,year 14), number of committers per year (i.e. 
committers in year 1, year 2,..,year 14) and productivity per year (productivity in 
year 1, year 2,..,year 14). 

Sample selection
Panel data is a dataset in which the behaviour of some entities is observed across 
time. In our case, these entities are individual FreeBSD modules. Our dataset does 
not  include  all  FreeBSD  modules  but  only  thirty  of  them  which  we  selected 
through stratified random sampling. This means that we first categorised FreeBSD's 
387 modules (at the time of selection)40 into three non-overlapping groups, called 
strata, based on their scale (small-scale, medium-scale, large-scale) as reflected in 
the number of developers contributing to them (N=387, H=3). Following this step, 
we selected ten modules from each category in random, that is, thirty modules in 
total. Table 3.1 lists the modules included in the sample. 

40 The dataset used for our analysis ends December 2007, at which time FreeBSD included 387 
modules. 
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Small-scale Medium-scale Large-scale

cardbus aac cd9660

digi agp coda

joy devfs firewire

netatalk hpfs netinet6

netipsec msdosfs nfsclient

nfs4client net80211 nfsserver

pccard netncp procsfs

random ntfs usb

rpc nwfs vm

xe pseudofs -41

Table 3.1: Sample of thirty FreeBSD modules 

Because  not  all  modules  were  added to  the  codebase  at  the  same time,  our 
dataset is unbalanced, meaning that some of the 29 modules comprising our sample 
do not have data for some years. The dataset is also disproportionate, meaning that 
the sample size of each stratum is disproportionate to the population size of the 
stratum. The majority of modules contained in the FreeBSD codebase are developed 
by small groups of no more than ten committers, but as modules produced by larger 
groups  have  probably  more  variability,  we  decided  to  allocate  more  than  a 
proportionate share of the sample to the 'medium-scale' and 'large-scale' strata. The 
use of such disproportionate stratification is typical of cases like ours in which one 
wishes to give more precision to the estimates made for those strata with a small  
population (Piazza 2010). 

Random-effects GLS regression
The statistical  techniques  most  commonly used to  analyse  panel  data  are fixed-
effects and random-effects regression. Regression is an approach to modelling the 

41 One module was excluded due to insufficient observations. That is why the final sample includes 
twenty-nine rather than thirty modules. 
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relationship between a dependent (or scalar) variable and one or more independent 
(or  explanatory)  variables.  To  test  our  hypotheses,  we  use  random-effects 
regressions. Unlike the fixed-effects model which exploits within-group variation, 
the random-effects model accounts for variation both within and between groups 
(Torres-Rayna 2008). That is, we opted for random-effects because we believe that 
differences between modules have a significant influence on our results.  To make 
sure that the random-effects model is the right one, we ran a Hausman test for  
every regression we performed, which is commonly used to decide between fixed 
and  random  effects.  This  confirmed  that  our  choice  of  random-effects  is 
appropriate. To illustrate this procedure, consider the below Hausman test, which 
we ran for  the regression of  committers  (indicator  of  group size)  on integrality 
index (indicator of modularity): 

                      ---- Coefficients ----
                  |      (b)          (B)            (b-B)     sqrt(diag(V_b-V_B))
                  |     fixed        random       Difference          S.E.
------------------+----------------------------------------------------------------
integrality_index |   -.0747161    -.1508722        .0761562        .0567604
-----------------------------------------------------------------------------------
                           b = consistent under Ho and Ha; obtained from xtreg
            B = inconsistent under Ha, efficient under Ho; obtained from xtreg

    Test:  Ho:  difference in coefficients not systematic

                  chi2(1) = (b-B)'[(V_b-V_B)^(-1)](b-B)
                          =        1.80
                Prob>chi2 =      0.1797

 Table 3.2: Hausman test for regression of committers on integrality index

In the test the null hypothesis is that the preferred model is random-effects. This 
is calculated by estimating random-effects and fixed-effects and then comparing the 
estimates. We see that the Prob>chi2 value is 0.1797. If that were smaller than 0.05 
(i.e.  significant),  then  fixed-effects  would  be  the  preferred  model.  In  our  case, 
Prob>chi2 is greater than 0.05, thereby confirming our choice of random-effects.  
The Hausman tests we ran for the other regressions gave similar results,  Prob>chi2 
being consistently greater than 0.05.  

For the estimation of regression coefficients, we use the method of Generalized  
Least  Squares (GLS).  GLS  is  an  extension  of  Ordinary  Least  Squares  (the  most 
common estimation method for regressions) which is commonly used for random-
effects  regressions,  as  OLS  cannot  simulate  random-effects  and  is  therefore 
unsuitable for our analytical purposes (Fox & Weisberg 2011).42

42 In analysing such a system of relations, an alternative to random-effects regression would be to 
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Operationalisation
As our research model consists of  five hypotheses, we developed five regression 
models to test them at the component-level to which we turn now.

H1: Product modularity reduces coordination costs in FOSS projects
Fig.  3.8  below  illustrates  the  hypothesised  relationship  between  the  variables 
included in the random-effects GLS regression model.   

Fig. 3.8: Empirical model for H1

H2: Product modularity increases the potential number of contributors to FOSS  
projects
Fig. 3.9 illustrates the hypothesised relationship between the variables included in 
the random-effects GLS regression model. 

Fig. 3.9: Empirical model for H2

H2R:  An  increase  of  contributors  to  a  FOSS  project  results  in  an  increase  of  
modularity
Fig. 3.10 illustrates the hypothesised relationship between the variables included in 
the random-effects GLS regression model. 

use Structural Equation Modeling (SEM). We chose not to do so, as relations between variables in 
the latter model would be harder to disentangle. But it is certainly a promising avenue for future 
research.  
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Fig. 3.10: Empirical model for H2R

H3:  Product  modularity  has  a  positive  effect  on  labour  productivity  in  FOSS  
projects
Fig. 3.11 illustrates the hypothesised relationship between the variables included in 
the random-effects GLS regression model.          

Fig. 3.11: Empirical model for H3

H4: Increasing group size has a negative effect on labour productivity
Fig. 3.12 illustrates the hypothesised relationship between the variables included in 
the random-effects GLS regression model. 

Fig. 3.12: Empirical model for H4

To test hypothesis  H4, we ran a multiple regression, that is, a regression with 
more than one independent variable. The rationale is that to rigorously analyse the 
effect of group size on average labour productivity, we must control for the effect of 
modularity. Thus, an indicator of modularity was included in the regression  as a 
control  variable.  A  frequent  problem  in  multiple  regression  is  that  of 
multicollinearity: the independent variables are near perfect linear combinations of 
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one  another  and  so  the  estimates  of  the  regression  model  cannot  be  precisely 
computed (Chen et al. 2003, chapter 2). To make sure that this is not the case with 
our  regression  model,  we  ran  a  Variance  Inflation  Factor  (VIF)  test,  which 
confirmed  there  is  no  problem  including  both  independent  variables  in  the 
regression. 

To illustrate this procedure, consider the below VIF test, which we ran for the 
regression  of  LOC  added  per  committer  (indicator  of  average  productivity)  on 
committers (indicator of group size) and integrality index (indicator of modularity). 
As can be seen in Table 3.3, the VIF value for committers and integrality index is 
1.08. Heuristically, a variable whose VIF value is  greater than 10 is  problematic 
(Chen  et  al.  2003,  chapter  2).  Since  the  VIF  value  for  both  committers  and 
integrality index is smaller than 10, there is no problem including both predictors 
in the regression model.

         Variable |       VIF       1/VIF  
------------------+----------------------
       committers |      1.08    0.925636
integrality_index |      1.08    0.925636
------------------+----------------------
         Mean VIF |      1.08 

Table 3.3: VIF test for regression of LOC added per commiter on committers, 
integrality index

It is important to mention that to explore the time-structure of causal processes, 
we also  tested  the empirical  models  with lagged (independent)  variables  in the 
regression tests. 

The  next  section of  this  chapter  summarises  our  data  sources,  the statistical 
instruments  used  for  testing  the  hypotheses  and  the  variables  included  in  the 
regression analyses. 

Summary of data sources, statistical tests and variables 
Table 3.4 lists our data sources. Table 3.5 summarises the statistical tests used for  
evaluating the hypotheses.

Primary data Secondary data

• Activity logs collected from 
FreeBSD code repository

• Archived project 

• Information released by 
FreeBSD (e.g. on FreeBSD 
website) or published by 
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communications (FreeBSD 
mailing lists)

• Survey of FreeBSD core 
developers

FreeBSD developers
• Past surveys of FreeBSD 

developers and organisation 
studies of FreeBSD

Table 3.4: Data sources

Hypo
thesis

Independent 
variables (i)

Dependent 
variables

Statistical 
instrument

N

H1 Propagation_cost,
integrality_index

vol_of_emails Descriptive 
statistics

N=Raw dataset

H2 propagation_cost, 
integrality_index

committers Descriptive 
statistics, 
regression 
analysis

N=242

H2R committers propagation_cost,
integrality_index

Descriptive 
statistics, 
regression 
analysis

N (small-scale/  
large-scale) = 

148/123

H3 propagation_cost, 
integrality_index 

Commits/committer,
Δ_LOC/committer, 
Δ_KB/committer

Descriptive 
statistics, 
regression 
analysis

N (small-scale/  
large-scale) = 

121/121

H4 committers Commits/committer,
Δ_LOC/committer, 
Δ_KB/committer

Descriptive 
statistics, 
regression 
analysis

N=277

Table 3.5: Summary of statistical tests

Table 3.6 lists all the variables, both independent and dependent, that will be 
included in the regression analyses. Table 3.7 shows the summary statistics. 
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Variable (i) H1 H2 H2R H3 H4

Modularity 
(propagation cost)

IV IV DV IV IV

Modularity
(integrality index)

IV IV DV IV IV

Coordination costs
(emails sent)

DV - - - -

Group size
(committers)

- DV IV - IV

Average productivity
(commits per  committer)

- - - DV DV

Average productivity
(LOC per committer)

- - - DV DV

Average productivity
(KB per committer)

- - - DV DV

Table 3.6: Variables (i) used in regression analyses
 (Notes on the table. IV: independent variable; DV: dependent variable) 

                     Variable |       Obs        Mean    Std. Dev.      
------------------------------+-----------------------------------
             propagation_cost |       280    .3821786     .148343      
            integrality_index |       271    4.175121    4.765997  
             ext_dependencies |       280    76.80714    41.76078          
ext_dependencies_per_module_j |       280    45.03814    7.225033      
           propagation_cost_j |       280    .1431786    .0453292       
                   committers |       280         9.2    7.167429        
           D_KB_per_committer |       277    10.55867     56.7478         
          D_LOC_per_committer |       277    259.8819    1106.289  
        commits_per_committer |       280     8.55925    8.853674 

Table 3.7 Summary statistics for variables used in regression analyses

Before we proceed to the data analysis, the next chapter describes the empirical 
setting of the research: the FreeBSD Project. 
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CHAPTER 4: EMPIRICAL SETTING

HISTORICAL BACKGROUND
FreeBSD is  a  free/open  source43 operating  system descended  from the  Berkeley 
Software Distribution (BSD), the version of Unix developed at the University of 
California at Berkeley. 

Unix was born in 1969. When AT&T's Bell Telephone Labs (BTL) pulled out 
from  Multics  –  a  joint  project  of  BTL,  General  Electrics  and  MIT  aimed  at 
developing an operating system capable of supporting simultaneously multiple users 
– some BTL programmers took it upon themselves to develop it without the support 
or even endorsement of their employer. So, the development of Unix began in a 
informal and anti-bureaucratic fashion. Bypassing BTL's corporate hierarchy, the 
programmers who spearheaded the making of Unix coordinated their work through 
their 'mutual adjustment' without any supervision or involvement on the part of 
their formal superordinates. But not being able to tap into the resources – whether  
administrative, technical or financial – controlled by BTL's corporate bureaucracy, 
they resorted to enlisting the participation of the hacker community, 'opening up' 
the Unix development process to anyone willing to contribute. As a result of their  
willingness  to  share  their  work  with  other  researchers,  a  network  of  users 
interested in enhancing Unix rapidly began to take shape in computer research 
institutes  and  universities  around  the  globe.  Of  all  development  hubs  outside 
AT&T, the most influential was the University of California at Berkeley, acting as a  
clearing-house for Unix research (Raymond 2003; Ritchie 1984; Salus 1994).

In 1973 Dennis Ritchie and Ken Thompson, the two BTL programmers chiefly 
responsible for the early development of Unix, presented a conference paper about 
Unix at Purdue University. Bob Fabry of the University of California, who was in 
attendance, took an immediate interest in it and brought a copy of Unix with him 
back to Berkeley (McKusick 1999, p. 31). The arrival of Thompson to Berkeley in 
1975 (who had himself  graduated from Berkeley in 1966) as a visiting professor 
reinforced  the  popularity  of  Unix  at  Berkeley  and  acted  as  a  catalyst  for  the 
formation of a research group of graduate students and staff researchers who were 

43 FreeBSD is distributed under the terms of the FreeBSD license. See Appendix I: The FreeBSD 
License. 
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to spearhead a software development effort culminating in what became known as 
the Berkeley Software Distribution or BSD for short (Leonard 2000). In his capacity 
as computer science professor, Fabry was the one responsible for making sure that  
the group was equipped with the requisite resources by 'manoeuvring through the 
formidable bureaucracy of the University of California and AT&T' (Leonard 2000), 
while  a small group, led by Bill Joy, who arrived to Berkeley in 1975 to attend 
graduate school, concentrated upon the task of developing the software. The first 
release of BSD occurred in 1977 with Joy as 'distribution secretary'. The next year 
(1978) Joy put together the 'Second Berkeley Software Distribution', shortened to 
2BSD,  followed  by  3BSD in  1979.  The  same  year  Fabry  secured  a  contract  to 
develop an enhanced version of 3BSD for the Defence Advanced Research Projects 
Agency's (DARPA) fledging computer network (which evolved into what we now 
call  the Internet).  Under the auspices  of  this  contract,  he set  up the Computer 
Science Research Group (CSRG), to which he appointed Joy as project leader. The 
improved version was released in October 1980 as 4BSD, followed by 4.1BSD in 
1981.  When  Joy  departed  in  1982,  Sam  Leffler  –  Joy's  second-in-command  – 
shouldered the responsibility of completing the release of 4.2BSD. Following its 
completion in August 1983, Leffler was replaced by Mike Karels, who was joined by 
Kirk McKusick a year later in December 1984. For the next seven years since Karels  
and  McKusick  picked  up  the  reins,  five  more  major  BSD releases  were  made: 
4.3BSD was released in 1986, 4.3BSD-Tahoe in 1988, Net1 in 1989, 4.3BSD-Reno in 
1990 and Net2 in 1991. The popularity of BSD rose higher with each one of them, 
in tandem with the rise in the number of its users and co-developers around the 
world.44 Two of them, named Lynne and Bill Jolitz, took the initiative to adapt BSD 
(using the  latest  release  4.3BSD Net2)  to  the  Intel  x86-based  PC architecture.45 
Thus,  in  1992 they released  on the  Internet  a  fully  functioning  system for  the 
386PC  to  which  they  gave  the  name  386BSD.  The  feedback  was  truly 
overwhelming:  the  Jolitzes  were  inundated  with  a  plethora  of  bug  fixes  and 

44 For an elaborate chronicle of the development of BSD by one of its leading figures, see McKusick 
(1999) or McKusick et al. (1996, chapter 1). 

45 According to FreeBSD developer Rich Murphy, 'Berkeley contracted Bill Jolitz to port BSD to  
the x86 platform, and he negotiated terms of his contract that required his source code to be 
released publicly' (Asterisk News 2004). Chalmers (2000) includes a rather revealing passage on 
the motivation of the Jolitzes  to  port  BSD to the x86  architecture:  'In  1989 or  1990,  Lynne 
remembers,  the  Berkeley  distribution  had  gone  from  being  available  on  the  most  relevant 
machines to being limited to what the Jolitzes saw as the most irrelevant. "There was an HP 
[Hewlett-Packard]  port  in  progress  and  nothing  else,"  she  says.  "Since  we  were  looking  for 
recreation, we offered to do one for the 386." "Completely as a lark," Bill adds'.
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enhancements  to  386BSD  to  the  point  that  they  could  not  keep  up  with  it.  
Confronted with their lack of responsiveness, a group of users began collecting bug 
fixes  and  enhancements,  distributing  them  as  the  'unofficial  386BSD  patchkit'. 
Initially  the  'patchkit'  was  supposed  to  be  a  temporary  solution  to  Jolitz's  
problematic handling of patches: its coordinators believed that its contents would 
eventually  be  merged  into  the  next  386BSD  release.  But  when  in  1993  Jolitz 
withdrew his support from the project, the last three coordinators of the patchkit – 
Rod Grimes, Jordan Hubbard and Nate Williams – decided to form the  FreeBSD 
group to coordinate  its  further  development.  Almost  simultaneously,  frustration 
with the pace of work in 386BSD led to the formation of one more splinter group, 
NetBSD, which began a parallel development effort, focusing on the adaptation of 
386BSD  to  non-x86  architectures  (Chalmers  2000;  FreeBSD  2011b,  chapter  1; 
Howard 2001; McKusick 1999). 

Fig. 4.1: International development (Source: Spinellis 2006) 

The first version of FreeBSD was released in December 1993. Shortly thereafter 
the project was unwillingly enmeshed in the legal conflict between the University 
of California and Unix System Laboratories (USL), an AT&T subsidiary which was 
later acquired by Novell, when in 1992 USL sued the University of California for 
distributing what it claimed to be proprietary AT&T code. When it turned out that 
USL's  distribution contained code  written  by  BSD,  the  University  of  California 
responded likewise. Faced with this problem, FreeBSD hackers rewrote major parts 
of the software in order to get rid of the contentious code, using 4.4BSD-Lite r2 – 
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the latest release made by the CSRG46 – as the basis of that reworking  (FreeBSD 
2011b,  chapter  1;  McKusick  1999).  The  result  was  released  as  version  2 in 
November 1994.  Since,  FreeBSD has been established as the most popular BSD-
descendant with a proven track record in mission-critical deployments.47 The latest 
release of  the project,  version  9.0, was made in January 2012 (FreeBSD 2011h). 
Nowadays,  the project  thrives on the contributions of a community of software 
developers  spread  the  world  over.  Though  development  effort  is  heavily 
concentrated  in  North  America  and  Europe  (see  Fig.  4.1  above),  FreeBSD 
development takes place in 34 countries on six continents (Spinellis 2006; Watson 
2006).

ORGANISATIONAL STRUCTURE
The organisational structure of FreeBSD is to large extent inherited from BSD, often 
credited  for  codifying  a  template  for  what  is  now  known  as  the  open  source 
development model. 

Fig. 4.2: FreeBSD organisational structure 

As  Kirk  McKusick,  one  of  the  BSD  hackers  and  long-standing  FreeBSD 
developer, says: 

46 Following the release of 4.4BSD-Lite Release 2 in June 1995, the CSRG was disbanded. 
47 See <http://www.bsdstats.org> and BSD Certification Group (2005). 
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the  contribution  that  we  made,  ultimately  was  in 
developing a model for doing open-source software...We 
figured out how you could take a small group of people 
and coordinate a software project where you have several 
hundred people working on it (quoted in Leonard 2000). 

This structure has a core team at its centre: a small group of programmers who 
control access to the codebase, vested with authority to grant or revoke the right to 
integrate changes to the project's code repository. Spreading out from them are the 
committers,  who  have  the  right  to  check  in  changes,  framed  by  the  wider 
community of outside contributors. 

Core team
The  core  team is  responsible  for  assigning  commit48 privileges  to  developers 
('awarding commit bits' in FreeBSD terminology) as well as suspending them, for 
resolving conflicts between them and appointing sub-committees for specific tasks 
(e.g. release engineering, security officer, webmaster). In this sense, the core team 
serves as the project's 'Board of Directors'. However, the role of the core team is not 
supposed  to  be  merely  administrative;  its  members  are  engaged  extensively  in 
software development, contributing code to the project. 

In 1993 the FreeBSD core team numbered 13 members: the tree founders of the 
project – Jordan Hubbard, Nate Williams and Rod Grimes – plus the most active 
then-committers. Now, it consists of nine members elected to a two-year term by 
and amongst active committers. Active are considered committers who have made 
at least one commit in the last twelve months, all of whom are eligible to vote and  
run as candidates. 

In the beginning, following the tradition established by BSD, 'those who hacked 
most became part of the “core group” or “core team”' (Lehey 2002). However, as 
FreeBSD committer Greg Lehey (2002) explains, 'by 2000, the core team was no 
longer the most active group of committers'. In parallel, concerns of a perceived 
illegitimacy in the exercise of authority by the core team, which to some extent had 
always  been  present,  assumed  crisis  proportions.  In  an  attempt  to  weather  the 
storm, Hubbard proposed a number of alternatives  about the future of  the core 

48 'When a change is integrated, it is called a commit' (Saers 2005).
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team – ranging from disbanding the core team completely to keeping it intact – and 
called on committers to decide by vote. It  was thus decided to adopt an elected 
model,  based  on  the  following  bylaws  drafted  to  regulate  core  team  elections 
(FreeBSD 2000; Lehey 2002):

• The core consists of nine elected active committers and election is held every 
two years 

• Core members and committers may be ejected by a 2/3 vote of core

• If the size of core falls below 7, an early election is held.

• A petition of 1/3 of active committers can trigger an early election.

• These rules can be changed by a 2/3 majority of committers if at least 50% of 
active committers cast their vote.

Table 4.1: Core bylaws (Source: FreeBSD 2000)

Approved by a vote of active committers (passed by 117 yes votes to 5 no votes  
[Lehey 2002]) on 28 August 2000, these bylaws established criteria of eligibility (all  
active  committers),  the  size  of  core  team (nine  committers),  the  periodicity  of 
elections  (fixed  at  every  two  years)  and  the  conditions  under  which:  (a)  early 
elections are held (on the petition of 1/3 of active committers or if size of core falls 
below 7), (b) a core team member or committer can be expelled from the project 
(by a 2/3 vote of core) and (c) these bylaws can be modified (FreeBSD 2002). The 
first core team formed in that way through elections consisted of five former core 
members (Satoshi Asami, David Greenman, Jordan Hubbard, Doug Rabson, Peter 
Wemm)  plus  four  new  ones  (Greg  Lehey,  Warner  Losh,  Mike  Smith,  Robert 
Watson). 

The first serious test of the ability of the reformed core team to manage conflicts 
between committers occurred in February 2002 when a committer made significant 
changes to the SMP49 module despite the fact that other committers had pointed 
out, when he announced his intention to do so, that his changes conflicted with 
those that John Baldwin – the most active then-SMP developer – was testing and 
that  he  should  refrain  from  committing  his  changes  before  consulting  with 
Baldwin. The core team stepped in, threatening to suspend his commit privileges if 
he did not back out his changes. He removed the changes and asked the core team 

49 The goal of the SMP project was to introduce parallelism into the kernel so that FreeBSD could  
be run on multiprocessor computer hardware architectures.
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to resolve the issue. In the end, after a month of discussion, the core team took the  
side of Baldwin, delegating authority to him to approve or reject changes to the 
SMP code. This experience led the core team to formulate disciplinary rules for the 
suspension of commit rights.50 These rules are as follows:

1.  Committing during code freezes results in a suspension of commit bits for two 
days.

2.  Committing to the security branch without approval results in a suspension of 
commit privileges for 2 days.

3.  Commit wars will result in both parties having their commit bits suspended 
for 5 days.

4.  Impolite or inappropriate behaviour results in suspension of commit bits for 5 
days.     

5.  Any single member of core or appropriate  other  teams can implement the 
suspension without the need for a formal vote.

6.  Core  reserves  the  right  to  impose  harsher  penalties  for  repeat  offenders, 
including longer suspension terms and the permanent removal of commit privileges. 
These penalties are subject to a 2/3 majority vote in core.

7.  In each case, the suspension will be published on the developers mailing list.

Table 4.2: Rules for the suspension of commit rights 
(Source: FreeBSD 2011d; Lehey 2002)

However, in order for the decisions of the core team to be received as legitimate, 
they must be (perceived as) consistent with the consensus of the opinions of the 
committers.  Characteristically,  in  June  2002  the  core  team  received  another 
complaint about the same committer. Once again he had committed changes to an 
area of the codebase without the approval of the committer who was responsible 
for  it.  The core team decided to suspend his  commit privileges  for  five  days in 
accordance with the aforementioned disciplinary rules.  But 'public  reaction was 
unfavourable':  the decision was censured for being politically-motivated, as core 
elections  were underway and the suspended committer  was  a  candidate.  Under 
these circumstances, the core team was forced to reprieve the suspension after two 

50 For  a  first-hand  account  of  the  implementation  of  SMP in  FreeBSD,  see  Lehey  (2003).  In  
connection with the specific conflict related in the text, see Lehey (2002). For a treatment from 
the perspective of organisation studies, see Holck & Jørgensen (2003/2004, p. 46) and Jørgensen 
(2001, p. 5; 2005, p. 234). 

81



days (Lehey 2002). However, not all conflicts are so hard to resolve. According to 
core  team  member  Robert  Watson,  the  vast  majority  of  disputes  between 
committers are resolved informally without requiring the mediation of the core 
team because 'the community is self-selecting, and primary criteria in evaluating 
candidates  to  join  the  developer  team are  not  just  technical  skills...but  also  the 
candidate's ability to work successful as part of a larger development team' (Watson 
2006).

In 2002 elections were held again as the core team was left with six members 
following the resignations of Satoshi Asami, Jordan Hubbard and Mike Smith. The 
new core team had five new members (John Baldwin, Jun Kuriyama, Mark Murray, 
Wes Peters, Murray Stokely) and four from the previous one formed in 2000 (Greg 
Lehey, Warner Losh, Robert Watson, Peter Wemm). Of its nine members, only one 
– Peter Wemm – was part of the original core team. Elections have been held four 
more times since. The last one in 2010 resulted in the following core team: John 
Baldwin, Konstantin Belousov, Warner Losh, Pav Lucistnik, Colin Percival, Wilko 
Bulte, Brooks Davis, Hiroki Sato and Robert Watson.    

Committers
Committers are the FreeBSD developers  who have the right to commit changes 
directly to the project's code repository. They are also responsible for integrating 
code that contributors without commit privileges send them. Outside contributors 
advance  to  the  ranks  of  committers  when  their  nomination  by  an  existing 
committer is approved by the core team, which alone has authority to grant commit 
privileges.51 This procedure,  as  committer  Michael  Lucas  explains, is  'fairly 
straightforward': 

if  you submit  enough useful  and correct  PRs [problem 
reports],  eventually  some  committer  will  get  sick  of 
taking care of your work and will ask you if you want to 
be  able  to  commit  them  yourself.  This  process  serves 
multiple  purposes;  after  all,  the FreeBSD community is 
made up of people who do the work. For committers, the 
work consists  of  creating useful  and correct  patches.  If 
you don't consistently and regularly create good patches, 

51 This applies to  src committers. Ports and documentation committers are approved by the Port 
Management Team and the Documentation Engineering Team respectively.  

82



there's  no  point  in  giving  you  commit  access,  now  is 
there?...By the time you've submitted several dozen PRs, 
you'll  either  work  well  with  the  FreeBSD  team  or 
everyone will understand that you and the team just can't 
get along. Direct-commit access is either an obvious next 
step, or an obviously bad move (Lucas 2002). 

New  committers  are  assigned  a  mentor,  typically  the  same  person  who 
recommended them for commit privileges. Mentors are responsible for everything 
their  protégés do in the project,  including answering their  questions,  reviewing 
their changes and familiarising them with FreeBSD's 'rules and conventions'. The 
period of mentorship, which could last for several months, ends when the mentor 
'releases'  formally  the new committer,  feeling  that  he has  proven he can work 
harmoniously with others in the project (FreeBSD 2011a; Lucas 2002).  

Committers focus on either of the three main areas of development at FreeBSD: 
src (kernel and userland), ports or documentation. Indicatively, a breakdown of the 
275  committers  who  made  commits  in  2002  (from  31  December  2001  to  31 
December 2002) reveals the following division of labour: 201 src committers, 144 
ports committers and 41 documentation committers (Saers 2005; see also Watson 
2006).52Their age varies between 17 and 58 years, with a mean age of 32 and median 
age of 30; the standard deviation is 7.2 years (Watson 2006).  

Fig. 4.3: Age distribution of committers (Source: Watson 2006) 

52 The subsequent analyses in chapters 6, 7 and 8 focus on  src committers alone. This analytical 
choice  was  made  on  the  grounds  that  the  other  two  areas  of  work  on  FreeBSD (ports and 
documentation) pertain less to new code development and more to peripheral, though necessary,  
activities.
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Although  FreeBSD  is  a  volunteer  organisation  and  committers  receive  no 
remuneration from the FreeBSD project for their contributions, many of them are 
seasoned professionals working in the IT industry. Thus, it is not surprising that, for 
some of them, working on FreeBSD is part of their professional work. In a survey of 
72 FreeBSD committers (constituting 35 percent of all  committers) conducted in 
2000, 21 percent...said that work on their latest contribution had been fully paid 
for,  and another 22 percent partially paid for'  (Jørgensen 2005, p. 233).  Warner 
Losh, sitting member of the core team, is one of them. In his opinion, getting paid 
to  work on FreeBSD is  not  uncommon.  As  he  says:  'my current  employer,  for 
example, allows me a certain amount of time each month to work on FreeBSD bugs 
that impact our ability to deploy a system. These get fed back into the base FreeBSD 
from time to time. Many other people are in a similar situation' (Losh interviewed 
in Loli-Queru 2003). For other FreeBSD committers, however, the importance of 
economic  incentives  should  not  be  over-emphasised,  for,  as  former  core  team 
member Greg Lehey says, 'a lot of people are motivated more than by money to 
work on FreeBSD. It is their hobby or passion. They find an itch to scratch using  
FreeBSD and FreeBSD benefits' (Lehey interviewed in Loli-Queru 2003). 

Outside contributors
Outside  contributors constitute  the  third  layer  of  the  FreeBSD  organisational 
structure. They are those who contribute to the project but do not have commit 
privileges.  Indicatively,  in  2001  there  were  1181  contributors  without  commit 
rights  on the periphery of the project  (FreeBSD 2001a),  1399 in 2003 (FreeBSD 
2003), 2018 in 2006 (FreeBSD 2006) and 2162 in 2010 (FreeBSD 2010d).    

Ad hoc teams
In addition to the core team, FreeBSD is supported administratively by an extensive 
array of ad hoc teams. The Documentation Engineering Team (4 members) and the 
FreeBSD Port Management Team (9 members) complement the core team in the 
context  of  general  project  management  (FreeBSD  2011e).  Beside  the  Primary  
Release Engineering Team (9 members), which is responsible for managing releases, 
there  are  seven  more  release  engineering  teams  corresponding  to  different 
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architectures.53 Four more teams centre on donations (9 members), marketing (12 
members), security (11 members) and vendor relations (7 members) respectively. 
And  last,  thirteen  teams  deal  with  matters  of  internal  administration  (e.g. 
administering  and  maintaining  project  websites,  FTP  servers,  CVS,  GNATS)
(FreeBSD 2011e). All teams are manned by committers assigned by the core team 
(on  a  voluntary  basis  of  course),  to  which  they  are  accountable.  The  relations  
between these teams are summed up in the organisational chart in Fig. 4.4:   

Fig. 4.4: FreeBSD organisational chart (Source: Watson 2006)

Though existing as a separate legal entity,54 among the aforementioned teams 
could also be considered the FreeBSD Foundation, which was founded in 2000 to 
support  the  development  and  popularisation  of  FreeBSD  (FreeBSD  Foundation 
2011).  More  specifically,  whereas  the  core  team  is  managing  the  development 
process,  the  Foundation,  whose  eight  directors  are  drawn  from  the  FreeBSD 
committers base, is responsible for the financial (e.g. fund raising) and legal aspects 

53 As of June 2011, these include the Alpha Release Engineering Team (2 members), the AMD64 
Release Engineering Team (1 member), the IA-64 Release Engineering Team (1 member), the  
i386 Release Engineering Team (2 members), the pc98 Release Engineering Team (1 member), 
the PowerPC Release Engineering Team (2 members), and the sparc64 Release Engineering Team 
(7 members). See FreeBSD (2010b). 

54 Due to uncertainty over the Foundation's long-term organisational viability, it was decided to set it  
up as a separate legal entity (based in Boulder, Colorado, USA) so that the project would not 
depend on the viability of the Foundation (Watson 2006). 
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of the project.  
Considering, however, the volunteer character of participation in the project, 

the arrows in the organisational chart do not signify top-down authority relations 
as conventionally understood in the context of hierarchical organisations. As Lehey 
(2002) says, 'the FreeBSD project is a volunteer organization, so the core team does 
not have a mandate to tell anybody to do anything'. Rather, as 'the organization is  
volunteer-driven'  and  the  core  team  is  elected  by  and  amongst  committers, 
'delegation of responsibility occurs up as much as down' (Watson 2006).  

Hats
Committers appointed by the core team to be responsible for some area of the code 
are  called  'hats':  they  are  expected  to  guide  development  in  that  area  of  the 
codebase and review submitted code (Losh 2006; Saers 2005, chapter 5). Hats may 
also  pertain  to  tasks  of  internal  administration  such  as  Perforce  Repository 
Administrators,  CVS  src  Repository  Managers,  Bugmeisters  or  GNATS 
Administrators; and hats purportedly bearing a rather heavy work-load tend to be 
assigned to teams of committers rather than a single person. Examples of such hats 
are all the aforementioned ad hoc teams that support the core team in matters of 
project  management.  Some  of  these  hats  have  been  formalised  over  time:  for 
example, the hat of FreeBSD Security Officer, which is currently appointed to a 
team  of  eleven  committers,  has  been  subject  to  the  FreeBSD  Security  Officer 
Charter since 2002, which specifies its duties and responsibilities.55 Most of the hats, 
however, have no charter attached to their functioning. 

Maintainers
The most common hat to which committers are appointed is that of  maintainer.  
Maintainers are committers vested with authority by the core team to review code 
submissions in a certain area of the codebase. A maintainer is thus expected to be 
responsible for that area of the codebase in which, as demonstrated through his 
participation in the project, he is an expert. Consequently, should some committer 
wish to make a change to an area of the code that is being maintained by someone 
else,  it  is  advisable  to  send that  change  to  him as  he would  have  done  before 

55 FreeBSD  Security  Officer  Charter.  Accessible  online  at 
<http://www.freebsd.org/security/charter.html>
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becoming a committer (FreeBSD 2011a; FreeBSD 1996). The maintainer's role, as 
the 'maintainers file' contained in the code repository explains, can be likened to 
that of a 'caretaker':   

In return for their active caretaking of the code it is polite 
to coordinate changes with them...this is not a 'big stick', 
it is an offer to help and a source of guidance.  It does not 
override  the  communal  nature  of  the  tree.  It  is  not  a 
registry of 'turf' or private property (FreeBSD 2011i). 

It becomes readily understood that the notion of responsibility in the case of 
FreeBSD  maintainers  should  not  be  conflated  with  a  mode  of  ownership  (or 
stewardship) configured around the right to exclude others  from modifying the 
codebase. The job of maintainers is to coordinate the process of integrating changes 
that impact the area of the code for which they are responsible,  not  to stall its 
further development.             

TECHNICAL INFRASTRUCTURE
The development of FreeBSD would have been unthinkable had not been for the 
Internet. Since its inception, the project has been thriving on the contributions of a 
loosely  coupled  community  of  software  developers  spread  the  world  over, 
connected only by the electronic strands of the Internet. 

Communication channels
In consequence of the extremely limited scope for face-to-face communications, the 
vast  majority  of  project  activities  occur  on  the  Internet.  Project  members 
communicate primarily through mailing lists, which constitute the 'life-blood of 
the project' (Watson 2006). With the exception of a few mailing lists which are 
'private'  (such  as  freebsd-core  which  is  intended  for  discussion  of  confidential 
matters by the core team), most mailing lists used in the project are 'public' so that 
anyone can browse their archives and read the messages exchanged via them.56 The 
repertoire of communication tools used by FreeBSD developers is complemented 

56 As  of  August  2011,  there  are  144  public  mailing  lists  in  use 
(<http://lists.freebsd.org/mailman/listinfo>) 
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with Internet Relay Chat (IRC) channels and – since 2008 – web forums.   

Revision control 
The FreeBSD project uses a parallel development process (which will be analysed in 
greater  detail  below),  which means that  development continues on two parallel 
tracks. The development of new functionality occurs in FreeBSD-Current, while a 
more stable branch is also maintained, known as FreeBSD-Stable.  To coordinate 
work on the two branches, the project has been using the CVS revision control 
system to track and provide control over changes to them since its launch in 1993.57 
However,  in  order  to  more  effectively  accommodate  massively  parallel 
development,  the  project  has  been  experimenting  since  2003  with  the  use  of 
multiple  revision  control  systems,  migrating  increasingly  more  development 
activities  centred  on  new features  from the  CVS  environment  to  Perforce  and 
Subversion  (SVN)  over  time  (FreeBSD 2011a,  2011b;  Long  2010;  Watson  2006; 
Wemm 2008).   

Reporting & managing defects
FreeBSD uses the GNATS bug-tracking database to report problems and keep track 
of their resolution. 

Testing
To test whether the evolving product is kept in a working state, FreeBSD uses three 
so-called Tinderbox servers that automatically build the most recent version of the 
software  every  few hours.58 The  results  are  posted  on  the  web and  on  project 
mailing lists, notifying committers of 'tinderbox failures'.

57 As Hubbard (1998b) explains: 'CVS lets us keep the different threads of development separate  
while assisting us with the merge process when something from the experimental track has had 
sufficient testing to enter the mainstream product'.

58 The  results  of  the  daily  build  process  are  accessible  online  at  <http://tinderbox.freebsd.org>. 
Indicatively, on 21 June 2011, tinderbox machines performed builds of the -current version and of 
six officially released versions of FreeBSD on nine different hardware platforms.
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Distribution channels
FreeBSD software is  distributed through various ways on the Internet: it  can be 
downloaded through bitTorrent,59 anonymous FTP,60 anonymous CVS, anonymous 
SVN  or  CVSup.  In  addition,  CDs  and  DVDs  are  available  from  several  online 
retailers (e.g. FreeBSD Mall at <http://www.freebsdmall.com>)(FreeBSD 2011b).    

DEVELOPMENT PROCESS 
Like  several  other  large  FOSS  projects,  FreeBSD  has  a  parallel  development 
structure.  There  are  two  simultaneous  development  processes  underway, 
crystallised in two different branches of the software. The stable branch represents 
the official released version, aimed at a stable and bug-free product. The  current 
branch,61 on  the  other  hand,  is  experimental:  it  is  where  most  cutting-edge 
developments and significant changes (e.g. new features) are first tried out. Fig. 4.5 
illustrates  the  development  model  based  on  the  process  by  which  changes  are 
integrated in the repository. 

Fig. 4.5: Change integration process (Source: Jørgensen 2001)

Prior to committing their changes to the repository, committers are expected to 
ask  for  community  review  (FreeBSD  2011d).  This  practice  usually  generates  a  
relatively modest amount of feedback,62 based on which they either have to revisit 

59 The  torrent  files  can  be  downloaded  from  the  FreeBSD  BitTorrent  tracker  at 
<http://torrents.freebsd.org:8080/>

60 In  addition  to  the  central  FTP  server  (ftp://ftp.FreeBSD.org/pub/FreeBSD/),  the  software  is 
available  from  a  worldwide  set  of  mirror  sites  listed  at 
<http://www.freebsd.org/doc/en_US.ISO8859-1/books/handbook/mirrors-ftp.html> 

61 FreeBSD-Current is also known as HEAD or trunk.
62 In a survey of 72 FreeBSD committers (constituting 35% of all committers) conducted in 2000, 

86% said they received feedback from two or more reviewers (Jørgensen 2001). 

89



their code or proceed to testing it on their own systems (by doing a trial build). 63 
Next, they commit the changes to the current branch, from which a development 
release is built and made available for download  every few hours. This release is 
tested  and  debugged  concurrently  by  many  more  users  and  developers  who 
download  the  software,  resulting  therefore  in  significant  improvement.  Once 
sufficiently  tested  and  deemed  mature  enough,  the  code  is  merged  by  the 
committer in the  stable branch,64 from which a production release is made about 
every four months.65 

Fig. 4.6: Branching: stable releases are branched from Current; features trickle 
from Current to stable branches as they stabilise (Source: Watson 2006)

The process,  despite its  incremental  character,  is  recursive:  each stage of the 
process might require of the committer to return to his code for further changes, 
thereby  re-initiating  the  process.  Naturally,  as  developers  work  mostly 
individually,66 the  model  is  used  in  parallel  by  multiple  developers  (Holck  & 
Jørgensen 2004; Saers 2005). 

Thirty days  before  the anticipated release  date,  the repository enters  a  code 
slush. During this time, only corrective changes (i.e. bug-fixes) can be checked in 
and they have to be approved by the Release Engineering Team. After the first  

63 Doing a build is an automated process by which (human-readable) source code is compiled to an 
executable program. If the compilation fails, then the build is said to be broken.  

64 The process of merging code from the current branch to the stable branch is known as  Merged 
From Current (MFC).

65 The project has been using a schedule with fixed timelines since the start of the 6-CURRENT 
development branch in 2004 (see Quarterly status reports, 2004).   

66 In a survey of 72 FreeBSD committers (constituting 35% of the group of committers) conducted 
in 2000, '65% said that their last task had been worked on largely by themselves only, with teams  
consisting of 2 and 3 committers each representing 14%' (Jørgensen 2001).    
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fifteen days of the code slush, a release candidate is released and at the same time 
the repository enters a code freeze, after which point further changes to it become 
almost impossible. The release candidate is further tested until considered ready by 
the Release Engineering Team, which then releases  it  as the official  production 
release (Jørgensen 2001; Stokely 2011; Watson 2006). 

As can be seen in Fig. 4.7, which shows the time that elapsed between successive 
FreeBSD releases from the release of version 1 in 1993 until the release of version 5  
in 2003, the FreeBSD development process results in a new release being made on 
average every 96.2 days (with a standard deviation of 62.9 days).67

Fig. 4.7: Days between releases 

SCALE 
In  the space  of  fourteen years  from 1994 to  2008,  the  scale  of  the  project  has 
increased remarkably. As Fig. 4.8 below illustrates, the size of the current branch in 
KB has  increased  by about  2350% and by 2855% if  measured by  lines  of  code 
(LOC). The increase of its size and functionality is also reflected in the number of 
modules  comprising  it,  which  manifest  an  increase  by  1370%.  Similarly,  the 
expansion of scale is mirrored in the enlargement of the (src) committers' base (see 
Fig. 4.9 below). Whereas in 1994 only 16 developers checked in code, their number 
rises over time to 198 in 2007, an increase by 1250%. 

67 See Appendix II: Release rate.
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Fig. 4.8: Codebase evolution (Current branch, src, 1994-2007)

Fig. 4.9: (src) committers

More specifically,  new committers  are continuously added to the group,  but 
only a small fraction of them ever opts out. Characteristically, as can be seen in Fig.  
4.10 and Fig. 4.11 below, in the space of three years from January 2000 to January 
2003, 142 developers were given commit-rights, while only 24 were removed from 
the group.68

68 See Appendix III: Committers added and removed per month.
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1994 9916 112960
1995 32284 496613
1996 42504 657172
1997 48152 755999
1998 58068 921744
1999 80532 1283254
2000 106224 1652801
2001 124452 1942366
2002 132280 1979032
2003 156548 2331529
2004 168572 2481646
2005 182992 2602123
2006 199384 2828727
2007 218316 3034654
2008 243080 3339072
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Fig. 4.10: New committers per month

Fig. 4.11: Removed committers per month

To test the first hypothesis derived from the literature review in chapter 2, the 
next chapter examines the effect of modularity on coordination costs. 
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CHAPTER 5: MODULARITY AND 
COORDINATION COSTS IN FREEBSD

INTRODUCTION
An assumption  that  figures  prominently  in  the  literature  of  modularity  is  that 
modular product design mitigates the need for active coordination between distinct 
product  components,  thereby  reducing  the  coordination  costs  involved  in  the 
product development process. Paradigmatic of this literature stream is Baldwin and 
Clark's  (2006a)  modularity  theory,  which  holds  that  the  end  result  of  the 
modularisation process is to 'move decisions from a central point of control to the 
individual modules. The newly decentralized system can then evolve in new ways' 
(Baldwin & Clark 2006a, p. 183).

Consequently,  'the  new  organizational  structure  imposes  a  much  smaller 
coordination burden on the overall...endeavour' (Baldwin & Clark 2006a, p. 191). 
To formulate it as a hypothesis: 

Product modularity reduces coordination costs

Fig. 5.1 illustrates the hypothesised effect in the broader context of the research 
model that sums up the hypotheses derived from the literature review in chapter 2: 

Fig. 5.1: Research model
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Oddly enough, though this proposition has been reiterated time and again in the 
literature  during  the  last  fifteen  years,  there  exists  no  record  of  a  quantitative 
validation of the moderating effect of product modularity on coordination costs, 
nor  of  its  falsification.69 Despite the fact  that  several  studies  have looked at the 
effect of product modularity on coordination, none has attempted to quantify the 
claimed benefit of modular design. The only one using  quantitative measures of 
coordination costs  is  Capiluppi and Adams'  (2009) study of  collaboration in the 
KDE Project, a large FOSS project. By tracking the communication paths among 
developers  over  time,  weighting  a  communication  path  between  any  two 
developers based on the number of source code files on which they collaborated, 
Capiluppi and Adams (2009) ascertained that fewer than ten developers participated 
in the project's early stage of development, which was characterised by extensive 
communication  within  the  group.  But  as  the  project  started  growing  and  the 
codebase  was  restructured  with  a  view  to  increasing  its  modularity, 
'communication compaction' (i.e. the average weight of path between developers) 
declined down to one third of its original value. In the last stage, when more than 
three hundred developers coalesced around the project, the compaction was still 
the same as when the project had no more than ten developers, that is to say, three 
hundred  developers  needed  'the  same  amount  of  communication  as  when  the 
developers were only 10' (Capiluppi & Adams 2009, p. 274). Capiluppi and Adams 
qualified these findings by arguing that while hundreds contribute to large FOSS 
projects such as KDE, most of the work is actually done by a close-knit group of 
high-contribution participants known as core developers. These developers cannot 
dispense with active coordination: the need to coordinate their activities is made 
necessary  by  the  extent  of  their  involvement  in  the  project.  But  unlike  core 
developers,  the  coordination  costs  that  encumber  the  work  of  peripheral 
contributors are considerably lower. The tasks they perform – reporting problems 
and contributing fixes  – do not require  of  them to work as  a  close-knit  group. 
Hence,  those  tasks  are  'parallelisable':  an infinite  number  of  individuals  can be 
simultaneously engaged in reporting bugs and fixing them (see also Raymond 1999). 
Put another way, the coordination costs involved in the periphery of the project are 
independent of group size. However, the degree of collaboration required for the 
development of new functionality is significantly higher, and so are the respective 

69 Gershenson et al. (2003, p. 307) close their literature review by noting that they 'have not found a 
single experiment to quantify or at least prove the claimed benefits of modular product design'.  

96



coordination costs.  In the light of this  analysis,  modularity is  what allows large 
FOSS projects  to  integrate  a  plethora  of  minute contributions  – in the form of 
problem-reports  and  fixes  –  without  exacerbating  the  organisational  costs  of 
collaboration among core developers (see also Benkler 2006; Capra et al 2008, p. 
769). Although that is without doubt an important perspective on the function of  
modularity in FOSS development, however by so qualifying their results, Capiluppi 
and Adams (2009) evade the question whether modularity mitigates the need for 
active  coordination  between  distinct  product  components  and  by  extension 
between the developers working on them.70  

Although the method employed by Capiluppi and Adams (2009) to collect and 
analyse  activity  logs  from KDE's  code  repository  as  a  factual  documentation of 
economic activity, despite the shortcomings of their analysis, is not devoid of merit, 
we  take  a  somewhat  different  approach  to  estimating  coordination  costs  in 
FreeBSD. For that purpose, our choice of metrics and data sources is dictated by 
project-specific considerations. As mailing lists are the primary communication fora 
in FreeBSD (FreeBSD 2011b), the number of emails exchanged by developers is the 
most  direct  measure  of  coordination  costs  available  in  this  setting.  However,  
because project communications occur on a multitude of mailing lists,71 each geared 
to different aspects of the project, identifying the one(s) centred on coordinating 
the development process is crucial. Through our review of the relevant literature, 
we were able to identify the  freebsd-current mailing list as the central forum for 
coordination  issues  related  to  the  current  branch.72 As  researchers  Holck  and 
Jørgensen (2004) explain: 

70 Actually,  Capiluppi  and  Adams  (2009)  do  not  measure  modularity:  they  assume  that  the 
restructuring of the codebase resulted in increased modularity. However, a more serious flaw in 
their  work  lies  in  the  confusing,  and  at  times  contradictory,  interpretation  placed  upon their 
findings.  Consider,  for  instance,  the  findings  they  report  in  a  follow-up  paper  in  which 
'communication compaction' is phrased as 'coordination cohesion'. Here they find that 'in this first  
phase [of KDE], fewer than 10 developers produce high cohesion scores, greater than 20' (Adams 
et al. 2009, p. 322). But when turning to the third and final stage of KDE's development, they 
mention that 'an apparent critical  mass is achieved,  requesting a coordination cohesion vastly  
larger  than when found when the project had only 10 developers'  (Ibid.,  p.  322)  (indeed,  by 
looking at the relevant plot in Fig. 2 in p. 323, one observes that cohesion rises from 20 up to 160  
over time). This result, by showing that the volume of communication among developers rises  
over time, obviously contradicts their previous finding that communication compaction in the 
final stage is the same as in the first stage.

71 As  of  August  2011,  there  are  144  public  mailing  lists  in  use 
(<http://lists.freebsd.org/mailman/listinfo>) 

72 The freebsd-current mailing list is archived online at <http://lists.freebsd.org/pipermail/freebsd-
current/>
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For developers  working on CURRENT, the mailing list 
freebsd-current is particularly important, as this is where 
all  announcements  of  important  changes  to  CURRENT 
will  be  given.  Also,  problems  in  building  or  running 
CURRENT will be posted to and discussed in this forum; 
these seem to account for around 75% of the list threads.

The FreeBSD Project (2011b) describes the list as follows:  

This is the mailing list for users of FreeBSD-CURRENT. It 
includes  warnings  about  new  features  coming  out  in 
-CURRENT that will affect the users, and instructions on 
steps that must be taken to remain -CURRENT. Anyone 
running “CURRENT” must subscribe to this list. This is a 
technical mailing list for which strictly technical content 
is expected.

To ensure that freebsd-current is indeed centred on coordinating development 
processes, we selected in random 100 emails sent over the list during a time-period 
of five years (from March 2003 to March 2008). Most of them (i.e. approx. 70%) 
were indeed related to coordination costs triggered by changes in the product such 
as  integration  breakdowns  ('broken  builds')  or  problem-reports  and  suggested 
problem-solutions  (i.e.  bug-fixes)  that  need to  be  reviewed and tested  by  more 
developers before they can be incorporated into the project repository.73 Having 
thus identified the freebsd-current mailing list as being the one most relevant to 
our inquiry, we resorted to using the number of emails sent over this list as an  
indicator  of  coordination costs  in  the  FreeBSD development  process.  Hence,  as 
coordination costs are proxy-measured by the number of emails sent over the list, 
the hypothesis can be reformulated as:

Product modularity reduces the number of emails sent

To further refine the hypothesis, we use the propagation cost of the codebase – 
which  captures the percentage of files that are likely to be affected on average 
when a change is made to a randomly selected file – as an indicator of modularity  

73 Some examples are exhibited in section Measuring coordination costs in chapter 3.
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(as  in  MacCormack  et  al.  [2006]  and  Milev  et  al.  [2009]).74 Therefore,  since  a 
decrease  of  propagation  cost  is  tantamount  to  an  increase  of  modularity,  the 
hypothesis can be readily operationalised as follows:  

As the propagation cost decreases, the number of emails  
sent decreases  (H1-operationalised)

QUALITATIVE ANALYSIS
Our analysis of descriptive statistics begins with an estimation of coordination costs 
based on the number of emails sent over the freebsd-current mailing list over time. 
As there are no archives of the list available for the years before 2003, our analysis  
focuses on the five year period from 2003 to 2008. As we can see in Fig. 5.2 below, 
17656 emails were sent over the list in 2003. The volume of communication on the 
list  increased by 52.3% to 26890 emails in 2004, but has since declined steadily 
down to 9839 emails in 2008. Suppossing that the number of emails sent over the 
list is a valid indicator of coordination costs in the project, these numbers suggest 
that coordination costs in the project have decreased over time.

Fig. 5.2: Number of emails sent over freebsd-current mailing list, 2003-2008

Having  ascertained  that  coordination  costs  decrease  over  time,  let  us  now 
examine the degree of modularity of FreeBSD as reflected in the propagation cost of 
the codebase. As Fig. 5.3 below illustrates, the propagation cost doubled from 10% 

74 For an elaborate discussion of the propagation cost metric, see section Measuring modularity in 
chapter 3.
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in 2003 to 21% in 2006, at which point it tends to stabilise since. The increase of  
propagation cost in the space of the first three years implies that FreeBSD evolved 
toward lower levels of modularity in that period.       

Fig. 5.3: Propagation cost (%)

 
Now, let us contrast the number of emails sent over the list with the propagation 

cost of the FreeBSD codebase in Fig. 5.4 below. We see that the number of emails 
has been decreasing since 2004 while the propagation cost, by contrast, has been 
increasing.  As an increase of  propagation cost  reflects  a decrease of  modularity, 
contrasting the propagation cost of the codebase with the volume of emails sent  
over the mailing list indicates that decreasing levels of modularity correlate with 
lower – rather than higher, as one would expect – coordination costs.  

Fig. 5.4: Coordination costs (emails sent over freebsd-current mailing list) versus 
modularity (proxy-measured by propagation cost)

The above results, should they be taken at face value, lead to the conclusion that 
both modularity and coordination costs tend to decrease over time. This conclusion 
is,  of  course,  nothing short  of  counter-intuitive:  modularity theory holds that  a 
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decrease  of  modularity  –  as  that  observed  by  looking  at  the  tendential  rise  in 
propagation cost in Fig. 5.4 – is impossible to bring about a decrease of coordination 
costs (such as that implied by the decrease in the number of emails sent over time).  
From the perspective of modularity theory, the increase in the space of three years 
in the percentage of files likely to be affected when a change is made to any one file 
by 100% implies that the need for active coordination increased analogously. Yet, 
our results are unsupportive of that syllogism: our analysis of descriptive statistics, 
by showing a tendential fall in the levels of both modularity and coordination costs, 
contradicts the claims made in the literature. 

It is difficult for these findings to be squared with the preliminary conclusions 
gleaned  from  prior  descriptive  research  in  FreeBSD  as  well  as  from  internal 
documents released by the project. There are a number of strong indications that 
militate against the conjecture that coordination costs in the project are decreasing 
over time. First, in 2001 the project started using quarterly status reports, citing the 
need to alleviate problems of information overload attendant upon increasing group 
size. As the first of these reports stated, 'the FreeBSD developer community has 
grown, and the rate of both mailing list traffic and tree modifications has increased, 
making it difficult even for the most dedicated developer to remain on top of all the 
work going on in the tree...[The] Status Report attempts to address this problem' 
(FreeBSD 2001b). Second, both Jordan Hubband and Mike Smith underlined the 
increasing difficulty of resolving conflicts among committers as the cause of their 
resignation from the core team in April and May 2002 respectively (KernelTrap 
2002;  Lehey  2002).  Third,  since  2002  Murray  Stokely  (2002),  primary  release 
engineer for most of the FreeBSD 4.x releases, has been  constantly stressing the 
need  to  formalise  FreeBSD's  release  engineering  activities  as  a  response  to  the 
coordination costs accompanying increased scale. What, in other words, militates 
against the conjecture – derived from the decrease in the number of emails sent via  
the freebsd-current mailing list over time – that coordination costs tend to decline 
is the increased scale of the project. As we have seen, the (src) committers base has 
expanded dramatically from 16 committers in 1994 to 209 in 2005 (see  Fig. 4.9: 
Committers in chapter 4). Since, according to Brooks' Law, adding more developers 
to a project results in an exponential increase in coordination costs (Boehm 1981; 
Brooks  1995),  the  sheer  magnitude  of  the  increase  in  the  number  of  FreeBSD 
developers with commit rights is strongly indicative of a concomitant increase in 
coordination  costs.  All  the  indications  of  rising  coordination  costs  so  far 
enumerated point to the possibility that the number of emails sent over the freebsd-
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current  mailing  list  is  problematic  as  an  indicator  of  coordination  costs  in  the 
project. It is  possible, as FreeBSD committers make frequent and systematic use of  
more than just one mailing lists to coordinate their activities, that the email traffic 
carried through the freebsd-current mailing list captures only a small portion of the 
overall coordination costs in the project. For example, a mailing list to which all 
committers are subscribed is  freebsd-developers. However,  because it  is  used for 
'discussions of work in progress [that] are not suitable for open publication and may 
harm FreeBSD', discussions on the list are closed to the public (FreeBSD 2011a). But 
as there is no record of them available, there is no way of estimating the volume of  
communication occuring on the list. 

Not being sure how to interpret the aforementioned findings, we proceeded to 
contrast  coordination costs  with modularity at  a  more  refined level  of  analysis, 
focusing on individual modules rather than  on the codebase as a whole.  Firewire 
was the first module we examined.75 

Fig. 5.5: Coordination costs (emails sent over freebsd-firewire mailing list) 
versus modularity (proxy-measured by propagation cost) in freebsd-firewire

However,  the  results  were  similar.  As  can  be  seen  in  Fig.  5.5 above,  the 
propagation cost  of  the firewire module increased from 30% in 2003 to 48% in 
2006, at which point it has tended to stabilise. The number of emails sent over the 
freebsd-firewire mailing list, by constrast, decreased from 203 in 2003 to 87 in 2006, 
thereafter increasing up to 193 emails in 2008. These data indicate that although 
the degree of modularity of the firewire component decreased in the first three 

75 The  freebsd-firewire  mailing  list  is  archived  online  at 
<http://lists.freebsd.org/mailman/listinfo/freebsd-firewire>.  As there  are  no archives  of  the  list 
available for the years before 2003, our analysis is limited to the five year period from 2003 until  
2008.
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years, the coordination costs involved in its development in that period decreased 
as well.  

After firewire, we looked at the usb module.76 As Fig. 5.6 shows, the propagation 
cost  of  usb  hovered  at  about  the  same levels  from 2005  until  2008,  while  the 
number of emails sent over the freebsd-usb mailing list decreased in the first year 
from 1298 to 1036 messages, thereafter increasing up to 1582 emails in 2008. 

Fig. 5.6: Coordination costs (emails sent over freebsd-usb mailing list) versus 
modularity (proxy-measured by propagation cost) in freebsd-usb

Let us look at these results more closely. From 2005 until 2006, both the degree 
of modularity of the usb component (as shown by the increase of propagation cost 
from 34% to 36%) and the coordination costs involved in its development (from 
1298  to  1036  messages)  decreased.  From  2007  until  2008,  both  the  degree  of 
modularity (as shown by the decrease of propagation cost from 36% to 34%) and 
the coordination costs involved in its development (from 1463 to 1582 messages) 
increased. Hence, rather than lead to an increase of coordination costs as theorised 
in the literature, we see that the decrease of modularity in the period 2005-2006 is  
accompanied by a decrease of coordination costs. Similarly, the evolution of usb 
toward higher  levels  of  modularity in the period 2007-2008 is  paralleled by an 
increase of coordination costs, rather than by a decrease as predicted by modularity 
theory. 

We  were  hoping  that  the  statistical  analysis,  by  focusing  on  the  level  of 
individual  modules  rather  than  on  the  entire  codebase,  would  permit  a  more 

76 The  freebsd-usb  mailing  list  is  archived  online  at 
<http://lists.freebsd.org/mailman/listinfo/freebsd-usb>.  As  there  are  no  archives  of  the  list 
available for the months before October 2004, our analysis is limited to the three year period from 
2005 until 2008.
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rigorous treatment of these questions. Unfortunately though, with the exception of 
freebsd-firewire  and  freebsd-usb,  no  other  mailing  list  of  those  specific  to  the 
twenty-nine  FreeBSD  modules  included  in  our  sample77 is  publicly  archived. 
Hence, the number of observations we were able to collect – based on five years of 
publicly archived data for freebsd-firewire and three years for freebsd-usb – are 
insufficient in order to perform a regression analysis. Consequently, it is impossible 
to test statistically the effect of the propagation cost of individual modules on the 
number of emails sent over the mailing lists centred on their development. 

CONCLUDING REMARKS
Some remarks  need to  be made  at  this  point.  First,  the qualitative  analysis  we 
conducted using descriptive statistics yielded results that challenge the validity of 
the hypothesis that modularity reduces coordination costs. Some of these results – 
notably,  the  decrease  in  the  number  of  emails  sent  over  time via  the  freebsd-
current mailing list – may appear contradictory in the light of strong indications of 
rising  coordination  costs  furnished  by  bibliographical  research  into  documents 
released by the FreeBSD project and its developers. A tentative explanation for the 
tendential  fall  in  the  number  of  emails  is  that  freebsd-current  is  not  the  only 
channel of coordination used by committers. Consequently, measuring the number 
of  emails  sent  over  freebsd-current  captures  but  a  portion  of  the  overall 
coordination costs in the project. Second, a more rigorous examination of the effect 
of modularity on coordination costs at the level of individual modules could not be 
successfully attempted. As archives of communications are available for only two of 
the twenty-nine modules included in our sample, the number of observations we 
were  able  to  collect  is  not  sufficient  for  statistical  analysis.  Not  being  able  to 
estimate coordination costs for the modules comprising our sample, the hypothesis 
could not be statistically tested. 

However,  the fact  that  we looked at  three instances  (i.e.  at  the level  of  the 
project  as  a  whole  and at  two components  separately)  and  found  no empirical 
support for the hypothesis that higher levels of modularity correlate with lower 
levels  of  coordination  costs  points  to  a  possible  'over-simplification'  of  the 
hypothesis as formulated in modularity theory. The fact that in all three instances  
both modularity and coordination costs move in the same direction, providing thus 
no evidence for the theoretical prediction that higher levels of modularity lead to 

77 For the procedure used to draw the sample, see section Sample construction in chapter 3.
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lower levels of coordination costs, implies that the hypothesis cannot be confirmed.
Based  on  the  results  of  our  analysis  of  descriptive  statistics,  H1 cannot  be 

confirmed.  
In the next chapter, we attempt to test hypothesis H2, which holds that product 

modularity increases the potential number of contributors to a project. 
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CHAPTER 6: MODULARITY AND GROUP SIZE 
IN FREEBSD

INTRODUCTION
An  assumption  underlying  much  of  the  research  in  modularity  from  an 
organisational and software engineering perspective – a real-world demonstration 
of which large free and open source software (FOSS) projects are considered to offer 
–  is  that  modular  product  design  is  required  for  large-scale  collaboration  in  a 
distributed product development environment. 

Testifying to the link between product modularity and group size, a simulation 
study of the interplay between codebase architecture and degree of participation in 
FOSS development by Baldwin and Clark (2006b) found that:

Projects  not  worth  undertaking  under  a  monolithic 
architecture may attract  tens or even hundreds of self-
interested  developers  under  a  sufficiently  modular 
architecture (Baldwin & Clark 2006b, p. 1123). 

Because  changes  can be  made  to  distinct  modules  without  undermining  the 
functionality of the  product as a whole, a modular architecture enhances the 'value 
options'78 embedded in a codebase, as opposed to a monolithic (i.e. non-modular) 
architecture where the tendency of changes to propagate throughout the product 
results in low option values (Baldwin & Clark 2006b, pp. 1117–1118). Hence, 'as the 
number of modules and the option values embedded in the system increase, more 
developers  will  work  in  equilibrium'  (Baldwin  &  Clark  2006b,  p.  1122). 
Accordingly, the effect of product modularity on the size of the group developing 

78 An  option, according to modern finance theory, is 'the right but not the obligation to choose a  
course  of  action  and  obtain  an  associated  payoff'  (Baldwin  &  Clark  2006b,  p.  1117).  This 
conceptual  instrument  is  used by Baldwin and Clark to  model  the value  of modular  product 
design upon the assumption that 'a new design creates the ability but not the necessity – the right  
but not the obligation – to do something in a new way...In this sense a new design is an option' 
(Ibid.). Thus, the analysis of value options in their work is geared to assessing the extent that the 
architecture of a systemic product encourages experimentation with regard to viable alternatives 
(i.e. substitutes) at the module-level. The same analytical approach can be found in Sullivan et al. 
(2001) and LaMantia et al. (2008). 
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the software is so significant that,

Open source codebases  that  are  more modular  or  have 
more  option  value  will  attract  more  voluntary 
contributions (effort) than codebases that are monolithic 
or have low option value' so that 'the more modular and 
option-rich the underlying designs, the larger and more 
active  the  user-innovator  communities  are  likely  to  be 
(Baldwin & Clark 2006b, p. 1126).     

In the final analysis, as Langlois and Garzarelli (2008) put it more recently, 'a 
modular system increases the potential number of contributors'.  On the basis of 
these claims, the following hypothesis can be stated: 

Product  modularity  increases  the  potential  number  of  
contributors to FreeBSD   (H2)

Fig.  6.1 situates the hypothesis  in the context  of the research model derived 
from the review of the literature on modularity in chapter 2:

Fig. 6.1: Research model

The  link  between  product  modularity  and  group  size  was  underlined  in  an 
empirical  study  of  the  modular  re-design  of  the  Mozilla  Web  browser,  which 
concluded  'that  different  modes  of  organization  are  associated  with  [product] 
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designs that possess different structures' (MacCormack et al. 2006). Prior to the re-
design (in 1998), Mozilla was developed by a close-knit group of programmers on 
the payroll  of  Netscape Corporation. Then, in 1997 Netscape released its  source 
code for free under an open source license in an attempt to undercut competition 
by distributing production requirements across the network. A modular re-design 
was  deemed  necessary  to  harness  the  power  of  distributed  development  by  a 
loosely-coupled network of volunteer programmers scattered around the world. It 
was  motivated  by  the  conscious  need  for  a  product  architecture  conducive  for 
large-scale  collaboration  over  the  Internet.  Consistent  with  the  project's 
expectations, 

the redesign to a more modular form was followed by an 
increase in the number of contributors (MacCormack et 
al. 2006, p. 1028).79

The authors of the study, MacCormack, Rusnak and Baldwin refrained however 
from an one-sided, monocausal interpretation. The results of  their inquiry, they 
pointed  out,  doubtlessly  reinforce  the  importance  conferred  upon  product 
modularity for giving shape to decentralised organisational structures. But at the 
same time they were attentive to the possibility that product structure evolved to 
reflect  the  production environment  in  which  it  was  now being  developed,  the 
decisive  factor  of  which  was  a  large,  informally  organised  and  geographically 
distributed  developers'  base.  By  emphasising  the  effect  of  group  dynamics  on 
product structure, the terms of the proposition are reversed and the proposition can 
be thereby reformulated as follows: 

An increase of contributors to a FOSS project results in  
an increase of modularity   

The  diagram in  Fig.  6.2 illustrates  the  hypothesis  by  reference  to  the  research 
model into which the claimed benefits of modularity crystallise:

79 Of note, the findings of Mockus  et al.  (2002) corroborate the view that Mozilla's modular re-
design led to an increase of contributors. 
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Fig. 6.2: Research model

Further  empirical  support  for  the  hypothesis  (H2R)  that  an  increase  of 
contributors to a FOSS project leads to higher levels of product modularity comes 
from  a  follow-up  study  by  the  same  researchers,  which  compared  five  paired 
software products with similar functions and levels of sophistication, concluding 
that,

larger, more distributed teams tend to develop products 
with  more  modular  architectures  (MacCormack  et  al. 
2008a, p. 2).  

In all five pairs they examined, using the products' propagation cost80 as a proxy 
for modularity, they found that,

the open source product is more modular than that of a 
product of comparable size developed by a smaller, more 
centralized team. Furthermore,  in the one open source 
product that possesses a relatively high propagation cost, 
the anomaly can be explained [by that it] is not the result 

80 As defined by MacCormack et al. (2006, p. 1020), the propagation cost captures 'the degree to 
which a change to any single element [that is, file] causes a (potential) change to other elements in 
the system, either directly or indirectly (i.e. through a chain of dependencies that exist across 
elements)'.
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of  a  large,  distributed  team.  Rather,  the  pattern  of 
development is more consistent with that of a small co-
located team (MacCormack et al. 2008a, pp. 20-21). 

In a nutshell,  the larger the group of contributors to a FOSS project the more  
modular the product. Since in the work of MacCormack et al. the degree of product 
modularity is captured by the products' propagation cost, the proposition can be 
stated alternatively as follows:  the larger the group of contributors the lower the  
propagation cost,  which, being quantitatively measurable, forms a hypothesis we 
can immediately test:

As  the  number  of  contributors  to  FreeBSD  increases,  
propagation cost decreases   (H2R-operationalised)

QUALITATIVE ANALYSIS
Let us begin with H2 which holds that modularity increases the potential number 
of  contributors.  As  in  the  studies  by  MacCormack  et  al.,  modularity  is  proxy-
measured by propagation cost. By examining FreeBSD's propagation cost over time 
in Fig. 6.3 below, if we exclude the period from 1999 until 2002 during which it 
declines, we see that propagation cost tends to rise over time, thereby indicating 
that FreeBSD becomes less modular over time. 

Fig. 6.3: Propagation cost (%)

Let us now examine the number of committers (i.e. contributors who have the 
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right to commit code to the project repository) who contribute code to the project.81 
Looking at the growth of the committers base in Fig. 6.4 below, one observes that 
the number of committers checking-in code to the repository increased more than 
tenfold (1250%), from 16 committers in 1994 to 198 in 2007, peaking at 209 in  
2005. 

Fig. 6.4: Committers (src)

Given  that  in  the  space  of  thirteen  years  the  committers  base  has  grown 
considerably from a small group of sixteen to about two hundred, one would have 
expected to find a tendency for the software's propagation cost to fall over time,  
assuming  that  the  hypothesis  holds.  Our  data  however  do  not  point  to  this 
direction. As can be seen in Fig. 6.3 above, the propagation cost of FreeBSD tends to 
rise over time. Finding therefore that FreeBSD's propagation cost does not decline 
as  committers  increase,  weakens  the  support  for  the  hypothesis  (H2)  that 
modularity increases the potential number of contributors. Although the number of 
contributors  to  the  project  does  indeed  increase,  this  phenomenon  is  not 
accompanied by a concurrent increase of modularity. Examining the growth of the 
committers  group  alongside  the  propagation  cost  of  the  codebase  (Fig.  6.3,  6.4  
above) shows that both committers and propagation cost increase in the course of 
development, which of course runs counter to the results reported by MacCormack 
et al. It is evident that the expansion of the committers group from 16 to about 200 
members  is  not  accounted  for  by  increasing  levels  of  modularity,  as  would  be 
suggested by a tendential fall in propagation cost. Quite the contrary, we observe a 

81 We counted only committers who contribute to the  src tree and excluded those involved in the 
ports and documentation tree. The rationale for this choice was that work on the latter two areas 
does not consist in new code development.
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tendency for the propagation cost to rise, signifying thus lower levels of modularity. 
Assuming that propagation cost is a valid indicator of modularity, then it suffices to 
contrast  it  with the growth of group size to challenge the hypothesis  (H2) that 
product modularity increases the potential number of contributors. And conversely, 
the same qualitative analysis of descriptive statistics suffices to cast doubt upon the 
hypothesis (H2R) that an increase of contributors to a FOSS project leads to higher 
levels of product modularity.

Hence,  replicating the MacCormack et al.  methodology for FreeBSD leads to 
conclusions diametrically opposite to those MacCormack et al. arrived at in their 
study  of  Mozilla.  Whereas  a  relation  of  inverse  proportionality  between 
propagation cost and committers is manifest in the Mozilla project, that is by no 
means the case in FreeBSD. How can this discrepancy in results be explained? On 
first  impression,  a  likely  explanation  is  that  the  two  products,  despite  being 
developed by large groups, simply differ in their architectural structure:  Mozilla 
becomes more modular over time, while FreeBSD evolves in the opposite direction. 
Accepting  this  explanation  implies  that  product  modularity  is  not  a  necessary 
condition for a large group to coalesce around a distributed development process 
(and conversely, that distributed development by a large group does not lead to 
higher levels of modularity). A problem more fundamental than the inadequacy of 
this explanation in accounting for increasing group size is  posed by the level of 
analysis itself: examining the relation between group size and modularity from the 
vantage point of the project as a single organisational entity does not allow for a 
rigorous analysis, as it leaves out of consideration  the fact that  the organisational 
impact of modularity is located at the level of the modules making up the product.  
Up to now we looked at the FreeBSD project holistically, treating it as an integrated 
whole, while it is at the level of individual modules that modularity is held to have 
its strongest effect by allowing for their independent development by autonomous 
groups. Our inquiry must therefore turn to individual modules as an appropriate 
unit of analysis. 

QUANTITATIVE ANALYSIS
To examine the effect of modularity on group dynamics at the level of individual 
modules, we carried out a regression analysis of a (panel) dataset consisting of a 
stratified  random  sample  of  twenty-nine  FreeBSD  modules82 with  observations 

82 See section  Sample selection in chapter 3 for a full description of the procedure employed to 
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spanning  fourteen  years  of  development  activity  from 1994  to  2008.  Table  6.1 
below lists the modules included in the analysis. 

Small-scale Medium-
scale

Large-scale

cardbus aac cd9660

digi agp coda

joy devfs firewire

netatalk hpfs netinet6

netipsec msdosfs nfsclient

nfs4client net80211 nfsserver

pccard netncp procsfs

random ntfs usb

rpc nwfs vm

xe pseudofs -

Table 6.1: FreeBSD modules included in regression analysis 
 

For the regression analysis,  we used the number of committers as dependent 
variable and propagation cost as independent variable. Furthermore, the correlation 
between observations was taken into account: instead of treating each observation 
as independent of all other observations in the dataset, it was obvious that each 
module  ought  to  be  considered  as  a  separate  software  project  with  its  own 
development process. Simply put, observations pertaining to the same module are 
correlated because the behaviour of developers of the same module is likely to be 
interrelated. To account for this  intraclass correlation (Fisher 1925, chapter 7), as 
distinct from a Pearson correlation which is between two variables, each module is 
used as a group (i.e. cluster) variable for the regression analysis.83 

The  empirical  model  in  Fig.  6.5 illustrates  the  directionality  of  effect  as 
hypothesised in H2:

draw the sample. 
83 The same group variable is used throughout all regression analyses presented in this chapter. 
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Fig. 6.5: Empirical model H2 

Before we proceed to the test results, however, let us elucidate the heuristics 
used to interpret them. The R-squared of the regression (also known as coefficient 
of determination) is the fraction of the variation in the dependent variable that is 
accounted for (or predicted by) the independent variables. In a regression like that 
below with a  single  independent  variable,  it  is  identical  with the square of  the 
correlation between the  dependent  and independent  variable.  The  R-squared is 
generally of secondary importance, unless the purpose of the regression is to make 
accurate predictions. What is more important is (a) the P value for the regression as 
a whole, which indicates the overall (statistical) significance of the empirical model 
and (b) the P value of the independent variable, which tells us how confident we 
can be that it is correlated with the dependent variable (Dallal 2001; DSS 2007). In 
keeping with the above rules of thumb, our interpretation of regression results is 
based  mainly  on the  P  value  for  the  regression  model  and  the  P  value  of  the  
independent variable.     

Table 6.2: Regression results–Effect of Modularity on Contributors 

We  can  now  continue  with  the  analysis  of  results:  the  regression  we  ran 
indicated no model significance (p = ns), suggesting that group size is not affected 
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         rho    .61925276   (fraction of variance due to u_i)
     sigma_e    4.3589837
     sigma_u    5.5590533
                                                                              
       _cons     8.276264   1.432741     5.78   0.000     5.468143    11.08438
propagatio~t     1.353946   2.554379     0.53   0.596    -3.652544    6.360436
                                                                              
  committers        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.5961
Random effects u_i ~ Gaussian                   Wald chi2(1)       =      0.28

       overall = 0.0004                                        max =        14
       between = 0.0010                                        avg =       9.7
R-sq:  within  = 0.0014                         Obs per group: min =         5

Group variable: module                          Number of groups   =        29
Random-effects GLS regression                   Number of obs      =       280



by the degree of modularity as captured by the propagation cost  (see  Table  6.2 
above). To make sure that potential time-lags were not overlooked, we proceeded 
to  a  lag  transformation  of  the  predictor,  so  that  we  could  test  the  effect  of  
modularity  in  year=t on  group  size  in  year=t+1.  Such  a  transformation  is  not 
arbitrary: it reflects the logical order of the hypothesised causal relationship (i.e. if 
A causes B, then by definition A precedes B) and so by establishing directionality it 
allows a refinement of the empirical model. Nevertheless, neither did the test with 
the lag transformation improve model significance (p = ns). 

Following  this  step,  we  decided  to  include  two  additional  indicators  of 
modularity  in  the  empirical  model:  external_dependencies_lag (henceforth 
abbreviated to ext_dependencies_lag) and integrality_index_lag. Fig. 6.6 illustrates 
the revised empirical model. 

Fig. 6.6: Revised empirical model H2

Compared to the propagation cost, the number of  external  dependencies is  a 
rather simplistic indicator of modularity, for the computation of the former takes 
account  not  only  of  the  number  of  dependencies  but  also  of  their  pattern  of  
propagation. Given however that a product's degree of modularity is determined by 
the dependency relations between its components (i.e. modules), using the number 
of external dependencies as a rough, yet straightforward, index of modularity is not 
unwarranted. The last indicator of modularity we added to the model,  integrality  
index, is the ratio of a module's external dependencies to internal dependencies. As 
a successful  modularisation implies that modules  contain most,  if not  all,  of  the 
dependencies  internally  and  the  dependencies  between  separate  modules  are 
eliminated or minimised (a practice known as clustering)(Parnas 1972; Sharman & 
Yassine 2004; Simon 1962), this metric captures the extent that dependencies have 
been effectively encapsulated within modules. Thus, its advantage compared to the 
other two indicators of modularity included in the model is that the importance of  
clustering, which eludes an analysis of modularity based either on propagation cost 
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or external dependencies, is taken into account.84 Prior to running the regression, 
we  wanted  to  make  sure  that  our  independent  variables  measure  different 
dimensions of the same construct rather than essentially the same thing. Including 
in the regression variables that are near perfect linear combinations of one another 
is a problem when the goal is to understand how the various independent variables 
affect  the  dependent  variable  because  the  estimates  of  the  coefficients  for  the 
regression become unstable. This is known as the multicollinearity problem. Thus, 
we ran a  Variance Inflation Factor  (VIF) test,  which is  commonly used for the 
purpose  of  assessing  multicollinearity.  This  showed  that  the  VIF  values  of  all 
independent variables are smaller than 10, thereby confirming that our predictors 
are not collinear and therefore can be included in the regression. 

             Variable |       VIF       1/VIF  
----------------------+----------------------
 ext_dependencies_lag |      1.21    0.824107
 propagation_cost_lag |      1.16    0.858636
integrality_index_lag |      1.05    0.954472
----------------------+----------------------
             Mean VIF |      1.14

Table 6.3: VIF test for regression of committers on ext_dependencies_lag, 
propagation_cost_lag and integrality_index_lag 

Table 6.4: Regression results–Effect of Modularity on Contributors

Moving  on  to  the  regression  itself,  as  Table  6.4  above  shows,  adding 
ext_dependencies_lag  and  integrality_index_lag  to  the  model  yields  results  that 
indicate strong model significance (p < 0.001), suggesting that modularity indeed 

84 For a more extensive description of the metrics, see section Measuring modularity in chapter 3.
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affects the number of contributors.
Let  us  look  more  closely  at  the test  results.  While  the  preceding  regression 

analysis found no significant effect of propagation_cost_lag (α = 0.05, β = - 1.48, p = 
0.54)  on  committers, it  now  appears  to  have  a  strong  effect.  Specifically,  the 
coefficient  for  propagation_cost_lag  is  negative  and  significant,  suggesting  that 
lower levels of modularity (as signified by an increase of propagation cost) lead to a 
decrease of contributors.  Hence,  it  supports  the hypothesis that  higher levels  of 
modularity result in increasing group size.

As for the effect of integrality_index_lag on the number of committers, it leans 
toward  significance  (α  =  0.05,  β  =  -  0.14,  p  =  0.10).85 The  coefficient  for 
integrality_index_lag  is  negative,  suggesting  that  lower  levels  of  modularity  (as 
indicated by an increase of integrality index) result in a decrease of committers.  
Consistent with theory, this result provides support for the hypothesis that higher 
levels of modularity result in increasing group size. 

A  strong  effect  on  committers  is  also  exerted  by  ext_dependencies_lag. 
Surprisingly  enough,  the  coefficient  for  ext_dependencies_lag  is  positive  and 
significant, indicating that when a module's external dependencies increase, so too 
do committers working on the module, a result which contrasts sharply with our 
theoretical  assumptions.  Modularity  theory  predicts  that  modules  loaded  with 
external dependencies will attract fewer contributors than modules relatively less 
encumbered,  on  account  of  the  coordination  costs  involved  in  managing 
interdependencies between modules. According to Baldwin and Clark, modularity 
increases  the  incentives  of  developers  to  join  and  remain  engaged  in  the 
development of a module by enabling its independent development. Thus, to the 
extent that modules are independent of one another so that changes in one module 
do  not  affect  the  others,  their  model  of  rational  choice  in  FOSS  development 
predicts that 'the more modular...the underlying designs, the larger and more active 
the user-innovator communities are likely to be' (Baldwin & Clark 2006b, p. 1126). 
Where  however  this  'separation of  concerns'  –  to  borrow a  phrase  that  Parnas 
(1972) uses to clarify the criterion of an effective modularisation – is thrown into  
disarray by the opaqueness of external dependencies, that is clearly no longer the 
case: by the logic of Baldwin and Clark's modularity theory, the more the external 
dependencies of a module, the smaller and less active its group of contributors is 
likely to be. That is only consistent, of course, given the higher learning costs that  

85 Abelson (1995, pp. 74-75) suggests that, instead of stating as 'marginally significant' results at the  
level of .05 < p < .15, they can be more precisely stated as leaning in significance and as hinting 
about significance for .15 < p < .25.  

118



contributors  to a  module with many external  dependencies  have to shoulder in 
order  to  familiarise  themselves  with  the  interactions  between  that  and  other 
modules, and the communication costs forced upon them by the need to coordinate 
their work with developers working on other modules.86 Yet, our results reveal the 
opposite tendency: they show that group size increases when external dependencies 
increase, so that the more dependent on other parts of the product a module is (i.e., 
the more it uses functionality contained in other modules), the more contributors 
are attracted to its development process. 

Although at first glance this result is counter-intuitive, it is consistent with two 
causal mechanisms, which in practice are likely to operate in parallel. The first is  
that  the  tendency  of  dependencies  to  rise  cannot  be  left  unattended:  as  the 
proliferation of  dependencies  has  a  degrading  effect  on product  structure,  their 
management constitutes a high priority maintenance task. According to the 'law of 
increasing complexity' (Belady & Lehman 1976; Lehman 1980; Lehman et al. 1997; 
Lehman  &  Ramil  2001),  the  complexity  of  a  software  product  increases  in 
proportion with the volume of changes made to it so 'that large-program structure 
must not only be created but must also be maintained if decay is to be avoided or, at 
least, postponed' (Lehman 1980).87 Consequently, unless a conscious effort is made 
to limit the degrading effect on product structure of modifications accumulating 
over  time,  the  larger  a  software  system  becomes  the  more  pervasive  shall 
interdependencies  be  in  its  development  process,  exacerbating  coordination 
problems  and  encumbering  further  development.  This  perspective  on  software 
maintenance  helps  explain  why  the  development  of  every  new  major  branch 
(version)  of  FreeBSD  involves  an  extensive  architectural  clean-up  (Loli-Gueru 
2003).  In  a  software  development  environment  characterised  by  low  levels  of 
structure (i.e.  a  development process  of  a non-modular product),  as Banker  and 
Slaughter  (2000,  p.  237)  point  out,  'maintenance  effort  and  errors  are  higher 
because  of  increases  in  the  number  of  relationships  that  a  maintainer  must 
understand  and  the  difficulties  in  tracing  interdependencies'  between  modules. 
Therefore, as product 'structure influences the efficacy of comprehension' (Ibid., p. 

86 For a discussion of the learning and coordination costs incurred by contributors to FOSS projects 
in which the principle of information hiding has not been properly implemented, see Rusovan et  
al., op. cit.

87 The basic premise is that the chronic accumulation of changes through which software systems  
evolve and grow larger, has a degrading effect on product structure (i.e. architecture) 'to the point 
where  the system can  no longer  be...maintained and  enhanced  unless  and  until  redesign  and 
cleanup or reimplementation is undertaken' (Lehman 1980, pp. 216-217).
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236),88 an elegant coding environment is preferable to one in which the practice of 
programming is obfuscated by the occurrence of interdependencies between tasks. 
Such a coding environment, however, takes effort to maintain. From this vantage 
point, an increase of a module's  external dependencies is  likely to prompt more 
contributors to concentrate on checking the growth of dependencies, increasing 
thus the size of the group working on the module. 

A  parallel  interpretation  of  this  phenomenon  is  that  some  modules  are 
continuously  upgraded.  And so  they  accumulate  changes  not  only  during  their 
early  development  stage  but  throughout  their  entire  life-span.  Considering  that 
modules  characterised by a  high frequency of  change are  bound to accumulate 
more dependencies than modules relatively less subject to change, it is likely that 
modules with many dependencies attract more contributors because they manifest 
a  high  rate  of  technical  change:  their  constant  change  signals  to  potential 
contributors that the development potential of the module has not been exhausted. 
This phenomenon is not new: several attempts have been made to illuminate its 
underlying causes through the analytical distinction between core and peripheral 
components. According to this theorisation of technical change, systemic products 
are composed of core and peripheral components: core components are developed 
first, then come peripheral components which are dependent upon the former. To 
illustrate, consider the familiar example of a car: the engine, the steering wheel and 
the metal body are the core components upon which all other components depend. 
As the early history of car design illustrates, 'once design converged to a fixed set of  
core concepts components (gasoline engines, steering wheels, and metal bodies), the 
design  of  core  components  were  no  longer  subject  to  dispute,  and  innovations 
shifted towards  low-pleiotropy89 peripheral components to fine-tune very specific 
functions (lamps, belt, sets, interior, catalyst, and so on) and to incrementally refine 
the core technologies underlying the core components (pistons, fuel inlet, and so 
on)'  (Murmann  &  Frenken  2006,  p.  942,  footnote  7).  This  pattern  of  product 
evolution is  not  limited to the car industry,  of  course:  the shift  of  the locus of 
development from core to peripheral components has been underlined in studies of 
personal computers and VCRs, to name but two examples.90 Viewed in the context 

88 Consequently, modularity 'can be seen as a means to facilitate knowledge sharing by making the 
structure of code explicit and observable' (Capra et al. 2008, p. 769). 

89 Although  Murmann  and  Frenken  (2006)  do  not  explicitly  consider  the  directionality  of 
dependency relations,  pleiotropy emphasises  in-degree external  dependencies  (i.e.  being used 
by...).

90 For a treatment of technical change in the early history of car design, see Clark (1985). For a  
description of the development of the IBM 360 computer based on the core-periphery model, see 
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of software development, the core consists of modules containing functionality that 
is heavily used by other modules; modules containing functionality that is seldom if 
ever used by other modules belong to the periphery.91 In terms of the product's 
dependency relations,  core  are modules  with many  in-degree dependencies  (i.e. 
being used by...) and few  out-degree dependencies (i.e. using...), while peripheral 
are those with few in-degree and many out-degree dependencies respectively. Core 
modules  form the epicentre  of the early development of  systemic products,  but 
once  they  reach  a  definite  level  of  maturity,  development  effort  turns  to  new 
modules,  which  are  adapted  to  the  core  ones:  plugged,  so  to  speak,  into  the 
periphery  of  the  product  structure.  Reinforcing  this  interpretation,  a  recent 
empirical study of how dependencies relate to the rate and direction of technical 
change in thirty FOSS (Java) projects,92 found that development activity gravitates 
toward modules with many out-degree dependencies, while modules with few out-
degree  dependencies  accumulate  changes  early  in  their  life-span,  thereafter 
stagnating (von Krogh et al. 2009). From this point of view, the positive effect of  
(out-degree)  external  dependencies  on  committers  that  the  regression  analysis 
highlights  is  accounted for  by the migration of  development  activity from core 
modules to new modules, which make extensive use of functionality contained in 
the former.93   

Following  the  regression  analysis  we  have  just  described,  we  attempted  to 
further refine the empirical model by controlling for environmental factors such as 
the modularity and  complexity of the broader FreeBSD project. Thus, the project-
level  variables  propagation_cost_j_lag and 
external_dependencies_per_module_j_lag (henceforth  abbreviated  to 
ext_dependencies_per_mod_j_lag)  were  added  to  the  model.  The  rationale  for 
including propagation_cost_j_lag as a proxy for project-level modularity is that the 
development of individual modules is embedded within the development process of 
the product as a whole, and so (the degree of modularity of) the broader production 
environment ought to be taken into account when inquiring into the determinants 

Baldwin and Clark (2000). On the relationship between core-periphery and technical change in  
VCRs, see Rosenbloom and Cusumano (1987).

91 Conversely, modules heavily reliant on functionality contained in other modules are peripheral; 
while modules that make minimal use of functionality contained in other modules are core.  

92 Twenty-eight projects were selected from the Sourceforge repository;  the remaining two were 
launched by IBM.

93 It is important to mention that the computation of all metrics used in the present study is based on 
out-degree (i.e.  using...)  dependencies; in-degree (i.e.  being used by...)  dependencies were not  
considered.    
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of group size at the module-level. The variable  ext_dependencies_per_mod_j_lag 
was added on similar grounds: its inclusion makes for a more refined examination 
of  the  growth  of  external  dependencies  than  measuring  external  dependencies 
independently of the number of modules contained in the product. The third and 
last  variable  added  to  the  model,  used  as  an  indicator  of  a  module's  stage  of 
development, is maturity_ln. The purpose of using this variable as a predictor in the 
regression analysis, therefore, is to capture effects associated with different stages of 
a module's development, elucidating thus group dynamics over a module's life-span. 
A log (Ln) transformation was applied to it upon the assumption that the gravity of 
its effect is likely to be stronger during the early years of a module's development.94 
Fig. 6.7 illustrates the expanded empirical model: 

 Fig. 6.7: Expanded empirical model H2

                      Variable |       VIF       1/VIF  
-------------------------------+----------------------
                   maturity_ln |      2.34    0.426960
ext_dependencies_per_mod_j_lag |      1.85    0.539796
        propagation_cost_j_lag |      1.47    0.680847
          propagation_cost_lag |      1.25    0.801658
          ext_dependencies_lag |      1.23    0.815149
         integrality_index_lag |      1.10    0.913064
-------------------------------+----------------------
                      Mean VIF |      1.54

Table 6.5: VIF test for regression of committers on propagation_cost_lag, 
integrality_index_lag, ext_dependencies_lag, propagation_Cost_j_lag, 

ext_dependencies_per_mod_j_lag, maturity_ln

94 The log transformation of the variable  maturity is retained throughout the regression analyses 
presented in this chapter. 
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Prior to running the regression, we run a VIF test to make sure there is  no 
problem (of multicollinearity caused by) including the six predictors in the same 
model. Its results, by showing that the VIF values of all variables are smaller than 
10,  confirm  that  our  predictors  are  not  collinear  and  can  be  included  in  the 
regression. 

Refining  the  model  in  this  way  yields  results  that  indicate  strong  model 
significance (p < 0.001). Table 6.6 reports the test results:

Table 6.6: Regression results–Effect of Modularity on Contributors

First of all, we observe that the effect of propagation_cost_lag on committers is 
no  longer  significant  (α  =  0.05,  β =  -  3.63,  p  =  0.34),  in  contradistinction  to 
integrality_index_lag, whose coefficient is negative and significant, suggesting, as 
theory  posits,  that  lower  levels  of  modularity  (as  captured  by  an  increase  of 
integrality_index_lag) bring about a decrease of contributors. Ext_dependencies_lag 
exerts a strong effect on committers too. The coefficient for ext_dependencies_lag is 
positive and significant, indicating that an increase of external dependencies leads 
to an increase of committers. As qualified in the context of the previous test, this is  
accounted for by the shift of development effort from core to peripheral modules 
with many (out-degree) external dependencies.

As  far  as  environmental  factors  are  concerned,  we  see  that 
propagation_cost_j_lag (which we use as a proxy for the modularity of the product 
as  a  whole)  has  a  strong  negative  effect  on  the  size  of  the  groups  developing 
individual modules, implying therefore that a decrease of modularity in the broader 
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         rho    .58341369   (fraction of variance due to u_i)
     sigma_e    3.3214327
     sigma_u    3.9306219
                                                                              
       _cons     6199.094   1879.782     3.30   0.001     2514.789    9883.399
 maturity_ln    -815.6295   247.4761    -3.30   0.001    -1300.674   -330.5852
ext_de~j_lag     .2268201   .0418048     5.43   0.000     .1448842    .3087559
propag~j_lag    -33.46749   6.399284    -5.23   0.000    -46.00986   -20.92513
integrali~ag    -.2002117   .0871668    -2.30   0.022    -.3710555   -.0293678
ext_de~s_lag     .0977915   .0126436     7.73   0.000     .0730104    .1225726
propag~t_lag    -3.636775   3.833202    -0.95   0.343    -11.14971    3.876163
                                                                              
  committers        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000
Random effects u_i ~ Gaussian                   Wald chi2(6)       =    119.07

       overall = 0.5281                                        max =        13
       between = 0.5779                                        avg =       8.3
R-sq:  within  = 0.2898                         Obs per group: min =         4

Group variable: module                          Number of groups   =        29
Random-effects GLS regression                   Number of obs      =       242



FreeBSD  production  environment  (as  captured  by  an  increase  of 
propagation_cost_j_lag)  has  a  discouraging  effect  on  contributors,  regardless  of 
which  module  they  elect  to  work  on.  The  complexity  of  the  FreeBSD project  
considered  as  a  whole  (captured  through  the  ext_dependencies_per_mod_j_lag 
variable) has a strong bearing on committers' choices, indicating that an increase of  
complexity results in an increase of contributors. At first sight, this proposition is 
nothing  short  of  absurd:  for  it  implies  that  not  only  does  increased  product 
complexity (and by implication increased complexity in the product development 
process) not hinder large-scale collaboration, but that it acts upon it as a catalyst. 
Yet  this  result  is  no  longer  mystifying  once  we  shun  the  assumption  that  the 
number of external dependencies divided by the number of modules contained in 
the product is a reliable index of complexity for the entire project. Similarly to the 
previous  statistical  test,  this  test  indicates  that  an  increase  of  a  module's  (out-
degree) external dependencies leads to an increase of its contributors, which result 
we qualified by introducing the analytical distinction between core and peripheral 
modules  and  arguing  that  over  time  development  effort  shifts  from  core  to 
peripheral  modules:  peripheral  in  the  sense  that  they  are  heavy  users  of 
functionality contained in core modules; core because they make limited, if any, use 
of functionality located in other modules.  Hence,  the reason why modules with 
many out-degree external dependencies attract many contributors is because the 
locus of development shifts to peripheral modules – by definition, those with many 
out-degree external dependencies – once core modules reach production-readiness 
(i.e. maturity). Looked at from this perspective, the ratio of external dependencies 
to modules is an index of core functionality: to be precise, an index of the amount 
of core functionality used by the cumulative number of modules in the product. In 
the case of FreeBSD in particular, the amount of core functionality contained in the 
codebase increased rapidly in the first three years of development from 1994 to 
1997, at which point it seems to have stabilised as a proportion of the total product, 
as Fig.  6.8 below illustrates. From 1998 onwards,  we see that core functionality 
increases at a rate similar to the size of the product (proxy-measured here by the 
number of modules comprising it). That is to say, its growth mirrors the increase in  
the  size  of  the  product  as  a  whole.  Apparently,  the  fraction  of  the  product 
represented by core functionality has since remained at the same level because the 
minimum  amount  of  core  functionality  required  for  an  operating  system  like 
FreeBSD  was  developed  in  the  first  three  years  of  the  project.  Examining  the 
growth of external dependencies relative to other measures of product size than the 
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number of modules it contains, reinforces this syllogism.95 As Fig. 6.9 and Fig. 6.10 
illustrate,  the ratio  of  external  dependencies  to  MB96 and KLOC97 has  remained 
stable after the first three years of development. 

 Fig. 6.8: Core functionality (external_dependencies_per_module)

Fig. 6.9: Core functionality (external_dependencies_per_MB)

Fig. 6.10: Core functionality (external_dependencies_per_KLOC)

95 This  pattern  of  design  evolution  is  not  limited  to  FreeBSD:  a  recent  empirical  study  by 
MacCormack et al. (2010) identified the same pattern in examining the evolution of the size of the 
core in Linux. 

96 1 MB = 1024 KB.
97 1 KLOC = 1000 LOC.
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To return to the statistical  analysis, an explanation therefore for the positive 

effect of ext_dependencies_per_mod_j_lag on committers is that an increase of core 
functionality reflects an expansion of project scale. The reported effect then is not 
so much accounted for by the growth of dependencies as by the enlargement of 
project scale, which operates as an attractor of potential contributors. Especially 
during a project's early stage of development, increasing scale signals to potential 
contributors that the project is gathering momentum. Nobody wants to contribute  
to a project that may languish, in fear that this would diminish the perceived value 
of their contributions or worse still,  that the time and programming effort they 
contributed be rendered useless. From this point of view, core functionality is an 
index of the utility of the evolving product.

Interestingly enough, maturity_ln has a  strong negative effect  on group size, 
indicating a tendency for modules to be developed by increasingly smaller groups 
over time. That is to say, modules attract more contributors in their early stage of 
development. How is this explained, considering that a module with a large group 
of contributors is  likely to attract even more contributors? Surely, the influence 
that large groups exert over potential contributors in choosing on which part of the 
project to focus should not be underestimated, for potential contributors are more 
likely to gravitate toward modules developed by large groups than small ones. Is  
this argument contradicted by our results? We think not. Apparently what accounts 
for the effect of time on group size is modules' level of production-readiness (i.e. 
maturity). During a module's early stage of development, the number of production 
tasks  available  for  potential  developers  to  tackle  is  much  greater  than  in  later 
development stages, thus signalling to potential developers that their contribution 
at this point in the module's life-cycle shall be in some way indispensable. As in 
that  phase  one's  contribution is  considered  to  have  a  perceptible  effect  on  the 
development of the module, contributing to a module's early development increases 
in attractiveness. Conversely, when a module approaches production-readiness and 
the number of production tasks pending completion is dramatically reduced, fewer 
contributors are needed. At that point most of the contributors hitherto engaged in 
the development of the module will be drawn to other parts of the project, leaving 
behind a committer  (or  a  small  team of committers)  to serve henceforth as  the 
maintainer of the module. In consequence, the number of contributors to a module 
falls over its development life-cycle, in inverse proportion to the module's level of 
maturity. Relative to mature modules, more contributors are attracted to modules 
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in an embryonic stage, for that phase signifies a potential for growth: it is early in a 
module's  life-span  that  one's  contribution  is  perceived  to  have  a  lasting  and 
indispensable effect.   

Concluding,  a  final  attempt  was  made  to  refine  the  regression  model  even 
further  by  excluding  variables  with  no  significant  effect.  Thus, 
propagation_cost_lag was removed from the regression.

Table 6.7: Regression results–Effect of Modularity on Contributors

As shown in Table 6.7 above, though removing it does not affect the model's 
significance or explanatory power (ΔR2  = 0.53, p < 0.001), the results now show a 
perceptibly  stronger  effect  of  integrality_index_lag  on  committers.  As  the 
coefficient for  integrality_index_lag is  negative and significant,  it  reinforces  the 
conclusion drawn from the previous test that a decrease in modularity results in 
decreasing group size.

A SUMMING UP
To sum up the results of our statistical tests: higher levels of modularity result in  

larger groups. In greater detail,  contributors to a module increase when (a) that 
module's  modularity increases and (b) the modularity of the broader production 
environment increases (i.e. the complexity of the broader production environment 
decreases). In addition, we found that (c) modules attract more contributors when 
the core functionality contained in the product increases and that (d) an increase of  
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         rho    .57423863   (fraction of variance due to u_i)
     sigma_e     3.320212
     sigma_u    3.8559278
                                                                              
       _cons     6700.813   1813.885     3.69   0.000     3145.664    10255.96
 maturity_ln    -881.7319   238.7863    -3.69   0.000    -1349.744   -413.7195
ext_de~j_lag     .2265167   .0418768     5.41   0.000     .1444396    .3085938
propag~j_lag    -34.13047   6.370398    -5.36   0.000    -46.61622   -21.64472
integrali~ag    -.2164368   .0853014    -2.54   0.011    -.3836245   -.0492492
ext_de~s_lag     .0940385   .0118353     7.95   0.000     .0708417    .1172352
                                                                              
  committers        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000
Random effects u_i ~ Gaussian                   Wald chi2(5)       =    118.97

       overall = 0.5315                                        max =        13
       between = 0.5774                                        avg =       8.3
R-sq:  within  = 0.2869                         Obs per group: min =         4

Group variable: module                          Number of groups   =        29
Random-effects GLS regression                   Number of obs      =       242



a module's (out-degree) external dependencies results in an increase of contributors 
to  that  module.  Conversely,  contributors  to  a  module  decrease  when  (a)  that 
module's  integrality increases  and (b)  the complexity of the broader production 
environment increases. Furthermore, we found that (c) contributors to a module 
decrease over time, as modules attract more contributors in their early development 
stage. Hence, the size of the group that develops a module is inversely proportional 
to the module's level of maturity: the more mature a module the smaller the size of  
the group developing it. In view of these results, H2 is verified. 

Before we proceed to test H2R and H3, drawing upon the results of testing H2 
allows us to evaluate the metrics we used in the analysis: of all the metrics used to 
assess individual modules' degree of modularity, integrality index appears to be the 
most robust. What propagation cost actually reflects at the component-level is not 
so  much  modularity  as  complexity:  assessing  the  cascading  effect  of  product 
changes ramifying through a chain of dependencies is not the same as assessing the 
extent that dependencies have been localised within modules.98 Last, (out-degree) 
external dependencies, though unfit for the purpose of assessing modularity, can be 
used as an index of the locus of development activity. To verify the soundness of 
what has been conjectured about the metrics used in the analysis, we contrasted the 
effect of lapse of time on propagation cost with its effect on integrality index. First, 
we carried out a regression analysis with  propagation cost as dependent variable 
and  maturity_ln as  independent  variable,  which  indicated  strong  model 
significance (p < 0.050):

Table 6.8: Regression results–Effect of lapse of time on Propagation Cost 

98 Put another way, the propagation cost reflects the need for coordination among source code files, 
rather than among modules (i.e. clusters of files) which is the object of inquiry proper.   
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         rho    .48704077   (fraction of variance due to u_i)
     sigma_e    .10268773
     sigma_u    .10005983
                                                                              
       _cons    -77.71154   29.54615    -2.63   0.009    -135.6209   -19.80215
 maturity_ln     10.27161   3.886545     2.64   0.008     2.654127     17.8891
                                                                              
propagatio~t        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0082
Random effects u_i ~ Gaussian                   Wald chi2(1)       =      6.98

       overall = 0.0010                                        max =        14
       between = 0.0437                                        avg =       9.7
R-sq:  within  = 0.0315                         Obs per group: min =         5

Group variable: module                          Number of groups   =        29
Random-effects GLS regression                   Number of obs      =       280



The positive coefficient for maturity_ln suggests that propagation cost rises over 
time, that is to say individual components' levels of modularity manifest a declining 
tendency. This declining tendency is also attested in the project-level descriptive 
statistics we discussed in the aforementioned qualitative analysis: as we have seen 
in  Fig.  6.3,  the  propagation  cost  of  the  codebase  as  a  whole  increases  as  the 
development process unfolds. Assuming that propagation cost is a valid indicator of 
modularity, its tendency to rise can only be interpreted as to mean that with the 
passage of time FreeBSD is characterised by increasingly lower levels of modularity.

Subsequently  to  testing  the  effect  of  lapse  of  time  on  propagation  cost,  we 
performed  another  regression  with  integrality  index  as  dependent  variable  and 
maturity_ln  again  as  independent  variable.  The  test  indicated  strong  model 
significance (p < 0.001):

Table 6.9: Regression results–Effect of lapse of time on Integrality Index

More importantly, the coefficient for maturity_ln is now negative, suggesting 
thus that integrality index falls  over time, that  is  to say individual components'  
degree of modularity manifests an increasing tendency.

How can  one  reconcile  the  conflicting  results  of  the  last  two  tests?  If  it  is 
assumed that propagation cost and integrality index are both robust component-
level  (i.e.  module-level)  proxies  for  modularity,  one  ends  up  with  logically 
inconsistent results: basing the analysis on propagation cost leads to the conclusion 
that individual modules' levels of modularity deteriorate; by contrast, one draws the 
conclusion  that  individual  modules'  levels  of  modularity  improve  when  using 
integrality index as a proxy. Given that a module's degree of modularity cannot be 
rising and falling at the same time, the inconsistency in the results can only mean 
that  one of  the two proxies  is  problematic – that  is,  either propagation cost  or 
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         rho    .82459093   (fraction of variance due to u_i)
     sigma_e    2.3418861
     sigma_u    5.0776062
                                                                              
       _cons     3577.526     704.68     5.08   0.000     2196.378    4958.673
 maturity_ln    -470.0172   92.69344    -5.07   0.000     -651.693   -288.3414
                                                                              
integralit~x        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000
Random effects u_i ~ Gaussian                   Wald chi2(1)       =     25.71

       overall = 0.0236                                        max =        14
       between = 0.0015                                        avg =       9.3
R-sq:  within  = 0.0970                         Obs per group: min =         5

Group variable: module                          Number of groups   =        29
Random-effects GLS regression                   Number of obs      =       271



integrality index does not capture modularity. As we explained earlier, propagation 
cost assesses the cascading effect of changes propagating through a chain of either 
direct or indirect dependencies between files, while integrality index reflects the 
extent  that  dependencies  have  been  successfully  encapsulated  within  modules. 
Insofar as the encapsulation of interactions (i.e. dependencies) is considered a more 
reliable criterion of the efficacy of the modularisation process at the component-
level (Parnas 1972; Sharman & Yassine 2004; Simon 1962; Wheeler 2007), it makes 
more sense to assess a module's degree of modularity through its integrality index 
than through its propagation cost. On the other hand, calculating the propagation 
cost at the module-level seems better suited to the task of assessing the impact that  
changing a file in a module exerts on other files within that module (on account of 
interdependencies between the focal point of the change and other files contained 
in the module). Viewed in this way, the propagation cost of a module is an index 
more akin to its internal complexity than its modularity. In addition, the results are 
no longer contradictory when interpreted in this light: in fact, it is extremely likely  
that a decrease of a module's integrality index is accompanied by an increase of its  
internal complexity. It follows from the operational logic of the clustering process99 
that  the  increase  of  a  module's  internal  complexity  is  a  concomitant  of  its  
encapsulation of interactions: hence, a module's  internal complexity increases in 
proportion to its encapsulation of interactions. 

Thanks to this clarification of metrics, we can revisit the results of our statistical 
tests  and further  elucidate them. Considering therefore that  a  module's  internal 
complexity and modularity is reflected in its propagation cost and integrality index 
respectively, our quantitative analysis indicates that modules evolve toward higher 
levels of modularity and internal complexity in the course of their development. 
With the passage of time modules become progressively less dependent on each 
other,  hence  more  modular.  In  parallel,  as  the  interdependence  between  files  
within modules rises over time, modules become also more internally complex.      
         

REVERSING THE TERMS OF THE PROPOSITION
While H2 holds that higher levels of modularity result in larger groups, in H2R the 
terms of the proposition are reversed so that the claimed  direction  of causality is 

99 Clustering is the process by which most,  if not all,  of the interactions (i.e. dependencies) are  
localised within clusters of system elements (i.e. modules) and the interactions or links between 
separate clusters are eliminated or minimised (Sharman & Yassine 2004, p. 40).
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from group dynamics to product structure: 

An  increase  of  contributors  to  FreeBSD  results  in  an  
increase of modularity  (H2R)

Empirical support for the hypothesis that the pattern of interactions between 
the developers  participating in a  software project  shapes  the resulting product's  
dependency relations comes  from the work of MacCormack et  al.  (2008a),  who 
compared five matched product pairs (of similar size and functionality) developed 
through  different  modes  of  organisation.  Importantly,  where  the  product  was 
developed  by  a  large  distributed  group  of  the  type  exemplified  by  large  FOSS 
projects like Linux, as opposed to a small and co-located group employed by a single 
firm, the resulting product was markedly more modular, thereby suggesting that 'a 
product's  architecture  tends  to  mirror  the  structure  of  the  organization  within 
which it is developed' (MacCormack et al. 2008a, p. 20). The crystallisation of the 
social relations of production into the software artefact, MacCormack et al. argued, 
is owed to the fact that,

In closed source projects, dedicated teams employed by a 
single firm and located at a single site develop the design. 
Problems  are  solved  by  face-to-face  interaction,  and 
performance “tweaked” by taking advantage of the access 
that  module  developers  have  to  the  information  and 
solutions  developed  in  other  modules.  Even  if  not  an 
explicit managerial choice, the design naturally becomes 
more  tightly-coupled.  By  contrast,  in  open  source 
products,  a  large  and widely distributed  team develops 
the design. Face-to-face communications are rare given 
most  developers  never  meet,  hence  fewer  connections 
between  the  modules  are  established.  The  architecture 
that evolves is more modular as a result of the inherent 
limitations on communication (MacCormack et al. 2008a, 
p. 21; also, see MacCormack et al. 2006, p. 1027).  

The main thrust of this argument is not foreign to software developers. Better 
known as Conway's Law, it was originally formulated in 1968 by Melvin Conway, 
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who  contended  that  'organizations  which  design  systems...are  constrained  to 
produce  designs  which  are  copies  of  the  communication  structures  of  these 
organizations'. This has been reported repeatedly. For example, a 1988 study of the 
development of seventeen large software systems observed that 'the social structure 
of  the  project  was  occasionally  factored  into  architectural  decisions...the 
partitioning  [of  the  product  architecture]  was  based  not  only  on  the  logical 
connectivity among components,  but  also on the social  connectivity among the 
staff'  (Curtis  et  al.  1988,  p.  1280).  Such  a  mirroring  effect was  more  recently 
attested in two empirical studies of FOSS development by Capra et al. (2008) and 
Merlo et  al.  (2009) based on seventy-five and thirty-seven FOSS (Java)  projects 
respectively.  Both  studies  qualified  this  result  by  arguing  that  modularity  is  a 
consequence  of  the  (decentralised,  informal  and  open)  governance  structure  of 
large  FOSS  projects.  It  follows  from  the  predominantly  volunteer  character  of 
participation in FOSS projects that contributors are not subject to the pressure of 
deadlines that apply to commercial software development settings. As a result of 
removing the pressure of deadlines from the development process, developers are 
given a motive to write clean, elegant code, developing thus software of higher 
design quality (and therefore more modular) than they would were they working at 
a commercial software firm. In addition, as programming practice in FOSS projects 
is  essentially  a  'public  process'  founded  on  the  openness  of  source  code,  
contributors to FOSS projects take for granted that their code shall be exposed to 
public  scrutiny.  This  serves  as  an  extremely  effective  mechanism  to  spur 
contributors on to producing high quality code. As Capra et al. (2008, p. 778) point 
out:            

When code is open, all team members take personal pride 
in writing  clean and understandable  pieces  of  code,  in 
polishing the design of their artifacts, and in commenting 
their work since they feel exposed to the judgement of 
the whole community of developers and, consequently, 
pay  particular  attention  to  [design]  quality.  When 
development  is  voluntary,  with  no  pressure  from 
managers or customers, time can be more easily allocated 
to improving the design of the code.

   
In order to test  H2R at the module-level, we performed a regression analysis 
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using the same dataset as before100 with integrality index as dependent variable and 
the number of committers as independent variable. As in testing H2, the intraclass 
correlation between observations pertaining to the same module was taken into 
account by using the group variable  module in the regression analysis. Fig. 6.11 
illustrates the empirical model:

Fig. 6.11: Empirical model H2R

However, the test indicated no model significance (p = ns):101

Table 6.10: Regression results–Effect of Contributors on Modularity

In  examining  other  alternatives,  we  resorted  to  testing  the  model  with 
propagation cost as dependent variable, taking into account however that it is a less 
robust  component-level  (module-level)  indicator  of  modularity  than  integrality 
index. But neither did this test indicate model significance (p = ns).102 

100The  panel  dataset  consists  of  a  stratified  sample  of  twenty-nine  FreeBSD  modules  with 
observations spanning fourteen years of development activity from 1994 to 2008. See section 
Sample selection in chapter 3 for a discussion of the sample selection procedure.  

101To  explore  the  time-structure  of  processes,  we  also  tested  the  model  with  the  predictor  
transformed  (i.e.  lagged  a  year)  but  the  test  indicated  no  model  significance  and  found  no 
significant effect of committers_lag (α = 0.05, β = -0.03, p = 0.36). 

102In experimenting with the regression model, we also tested it with the predictor transformed (i.e.  
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         rho    .78908183   (fraction of variance due to u_i)
     sigma_e    2.4623781
     sigma_u    4.7627606
                                                                              
       _cons     4.651601   .9525754     4.88   0.000     2.784587    6.518614
  committers    -.0361363   .0350957    -1.03   0.303    -.1049226      .03265
                                                                              
integralit~x        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.3032
Random effects u_i ~ Gaussian                   Wald chi2(1)       =      1.06

       overall = 0.0744                                        max =        14
       between = 0.1159                                        avg =       9.3
R-sq:  within  = 0.0017                         Obs per group: min =         5

Group variable: module                          Number of groups   =        29
Random-effects GLS regression                   Number of obs      =       271



As none of the tests indicates a significant effect of committers on propagation 
cost or integrality index, we find so far no empirical support for the hypothesis  
(H2R) that an increase of participants in a distributed software development process 
leads to higher levels of modularity. 

Scale considerations
In  order  to  verify  the absence  of  a  perceptible  effect  of  group  size  on product 
structure as well as to make sure that the effect of scale has not been overlooked, 
we attempted to refine the analysis by distinguishing between conditions of large-
scale and small-scale development based on the median of committers. That being 
eight, a small-scale development process is reflected in years that fewer than nine 
committers participate in the development of a module (i.e. committers < 9), while 
large-scale  development  is  reflected  in  years  that  committers  exceed  eight  (i.e.  
committers  >  8).  Distinguishing  thus  large-scale  from  small-scale  development 
conditions,  to  examine  the  effect  of  group  size  on  modularity  in  a  large-scale 
development process, we carried out a regression analysis with integrality index as 
dependent  variable  and  committers as  independent  variable,  excluding  years  in  
which committers are fewer than nine. Contrary to the previous two tests, this one 
indicated strong model significance (p < 0.050):

Table 6.11:  Regression results–Effect of Contributors on Modularity in Large-
scale conditions (Condition: if committers > 8)

As Table 6.11 shows, the coefficient for committers is significant and negative, 

lagged a year), but again the test indicated no model significance and found no significant effect 
of committers_lag (α = 0.05, β = 0.00, p = 0.25).
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         rho     .5745161   (fraction of variance due to u_i)
     sigma_e    1.3853117
     sigma_u    1.6097449
                                                                              
       _cons     3.890664   .5073959     7.67   0.000     2.896186    4.885142
  committers    -.0607349   .0271312    -2.24   0.025    -.1139112   -.0075587
                                                                              
integralit~x        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0252
Random effects u_i ~ Gaussian                   Wald chi2(1)       =      5.01

       overall = 0.2228                                        max =        14
       between = 0.1508                                        avg =       5.1
R-sq:  within  = 0.0219                         Obs per group: min =         1

Group variable: module                          Number of groups   =        24
Random-effects GLS regression                   Number of obs      =       123



suggesting that an increase of committers leads to a decrease of integrality index.  
Hence,  increasing group size in conditions of large-scale development results  in 
higher levels of modularity.

Subsequently to testing the effect  of  group size  on modularity in large-scale 
development  conditions,  we  proceeded  to  test  this  relationship  in  conditions 
characteristic  of  small-scale  development.  To  do  this,  we  repeated  the  above 
regression analysis (with integrality index as dependent variable and committers as 
independent variable),  but  we now  excluded years  in which committers exceed  
eight. However, the test indicated no model significance (p = ns):

Table 6.12:  Regression results–Effect of Contributors on Modularity in Small-
scale conditions (Condition: if committers < 9)  

In contrast to the test focusing on large-scale development conditions (Table  
6.11) which  suggests  that  an  increase  of  committers  leads  to  higher  levels  of 
modularity,  the test  centred on small-scale development conditions  (Table 6.12) 
found  no  significant  effect.  Hence,  considered  together,  they  offer  empirical 
support for the hypothesis (H2R) that increasing group size leads to higher levels of 
modularity upon the condition that large-scale development conditions apply.  

As we ascertained when testing  H2, individual modules evolve toward higher 
levels of modularity and internal complexity in the course of their development, 
which result we qualified by pointing out that a module's internal complexity rises 
as a result of its encapsulation of dependencies. We are now in position to conduct 
an additional test of robustness for this finding from a different angle. We have  
already seen that increasing group size leads to higher levels of modularity in large-
scale  development  conditions.  How  does  this  relate  to  the  effect  on  modules' 
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         rho    .71130735   (fraction of variance due to u_i)
     sigma_e    3.1572585
     sigma_u    4.9558817
                                                                              
       _cons     4.339793   1.284706     3.38   0.001     1.821816     6.85777
  committers     .0553826   .1572942     0.35   0.725    -.2529082    .3636735
                                                                              
integralit~x        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.7248
Random effects u_i ~ Gaussian                   Wald chi2(1)       =      0.12

       overall = 0.0153                                        max =        11
       between = 0.0244                                        avg =       5.3
R-sq:  within  = 0.0026                         Obs per group: min =         1

Group variable: module                          Number of groups   =        28
Random-effects GLS regression                   Number of obs      =       148



internal complexity? Is the internal complexity of a module rising in parallel with 
its modularity, as would be expected from the conclusions we have drawn so far? 
To find out, we looked at the effect of group size on complexity in conditions of 
large-scale development by conducting a regression analysis with propagation cost 
as dependent variable and committers as independent variable,  excluding years in  
which committers are fewer than nine. The test indicated strong model significance 
(p < 0.005):  

Table 6.13:  Regression results–Effect of Contributors on Complexity in Large-
scale conditions (Condition: if committers > 8)

Specifically, the coefficient for committers is significant and positive, suggesting 
that  an increase  of  group  size  in a  large-scale  development  process  leads  to  an 
increase of propagation cost, that is, an increase of complexity. Therefore, insofar as 
large-scale  development  conditions apply,  increasing group size brings about  an 
increase  of  modularity  (Table  6.11) and  internal  complexity  (Table  6.13), 
reinforcing thus the foregoing interpretation of results. 

To recap, our statistical tests (Tables 6.11, 6.13) show that an increase of group 
size in a large-scale development process results in higher levels of modularity and 
internal complexity alike. Consequently, we find empirical support for H2R that a  
software  product  becomes  more  modular  when  the  number  of  developers  
participating in its development process increases upon the condition that large-
scale  development  conditions  apply. Furthermore,  consistent  with the foregoing 
analysis,  this  finding reinforces  the conclusion that  at the component  level  (i.e.  
module-level) an increase of modularity is accompanied by an increase of internal 
complexity. By contrast, we find no support for H2R in conditions characteristic of 
small-scale development. The absence of a perceptible effect of increasing group 
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         rho    .51486497   (fraction of variance due to u_i)
     sigma_e    .06733187
     sigma_u    .06936431
                                                                              
       _cons     .3148119   .0231866    13.58   0.000      .269367    .3602568
  committers     .0038438   .0012867     2.99   0.003     .0013219    .0063658
                                                                              
propagatio~t        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0028
Random effects u_i ~ Gaussian                   Wald chi2(1)       =      8.92

       overall = 0.0285                                        max =        14
       between = 0.0079                                        avg =       5.1
R-sq:  within  = 0.0921                         Obs per group: min =         1

Group variable: module                          Number of groups   =        24
Random-effects GLS regression                   Number of obs      =       123



size on product design in small-scale development settings hints that adding more 
developers to a project – when the overall development group remains small – does 
not necessitate a radical modification of work patterns. Provided that the group 
remains small, developers' work process is not significantly affected by an increase 
of developers  working on the project. Insofar as no modification of the existing 
communication  system  is  required,  an  increase  in  the  number  of  developers 
working  on  a  project  is  rather  unlikely  to  leave  a  mark  on  the  architectural  
structure of the product. In order for an increase of group size to crystallise into the 
software artefact, the increase must be such that it  renders necessary a (radical)  
modification of communication patterns and, by extension, work patterns.   

CONCLUDING REMARKS
The statistical analyses presented in this chapter provide strong empirical support 
for  the  hypothesis  (H2)  that  modularity  increases  the  potential  number  of 
contributors as well as for hypothesis H2R which reverses the directionality of the 
claimed effect so that increasing group size results in an increase of modularity. 
Thus, H2 and H2R are verified. 

A concern raised by these results is whether the regression models used to test 
H2 and H2R reveal correlations instead of causal processes. To delve more deeply 
into the modularity-committers relation, we tried to test for forms of causality by 
doing  a  standard  bivariate  Granger-causality  test  on  committers  and  integrality 
index. 

( 1)  integrality_index_lag = 0

       F(  1,   239) =   23.29
            Prob > F =    0.0000

Table 6.14: Granger causality test
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       _cons     10.35411   .8169576    12.67   0.000      8.74475    11.96346
integrali~ag     -.449088   .0930598    -4.83   0.000    -.6324103   -.2657658
committer~ag     .1701838   .0599941     2.84   0.005      .051999    .2883686
                                                                              
  committers        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    12915.9339   241  53.5930867           Root MSE      =    6.91
                                                       Adj R-squared =  0.1091
    Residual    11411.8067   239  47.7481454           R-squared     =  0.1165
       Model    1504.12714     2  752.063572           Prob > F      =  0.0000
                                                       F(  2,   239) =   15.75
      Source         SS       df       MS              Number of obs =     242



The notion of Granger causality (Granger 1969) is simple: If lagged values of X 
predict current values of Y in a forecast formed from lagged values of both X and Y, 
then  X is  said  to  Granger-cause  Y. We  implemented  the  test  by  regressing 
committers  on lagged  committers  (committers_lag)  and  lagged  integrality  index 
(integrality_index_lag).  As  Table  6.14  above  shows,  the  test  found  statistically 
significant causality. In specific, we see that the coefficient on lagged integrality 
index  is  significant,  which  suggests that  integrality  index  causes  committers. 
Following this step, we used a symmetric regression to test the reverse causality:

 
( 1)  committers_lag = 0
       F(  1,   239) =    1.57
            Prob > F =    0.2112

Table 6.15: Granger causality test

Here we see that the resulting F-statistic is  1.57 with significance level  0.2112, 
indicating  thus  that  committers  do  not Granger-cause  integrality  index.  It  is 
important to note that these results do not necessarily imply that committers have 
no effect on integrality index. Rather, the interpretation we give to these results is 
based on the 'temporal ordering interpretation of Granger causality' (Thurman & 
Fisher 1988), by which we mean that our purpose is to provide an empirical answer 
to the question which comes first, modularity or committers? In this case, based on 
the  results  of  our  Granger  test,  we  conclude  that  the  effect  of  modularity  on 
committers comes first, preceding the effect that committers exert on the product 
structure.

The full implications of these results are explored in  Chapter 10: Conclusions,  
where a synthesis of the research findings is attempted. In the next chapter, our 
inquiry turns to the third hypothesis which holds that product modularity has a 
positive effect on labour productivity. 
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       _cons     .4898839   .2224646     2.20   0.029     .0516421    .9281256
committer~ag    -.0204813   .0163369    -1.25   0.211     -.052664    .0117014
integrali~ag     .8833187    .025341    34.86   0.000     .8333985    .9332389
                                                                              
integralit~x        Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval]
                                                                              

       Total    5155.75898   241  21.3931908           Root MSE      =  1.8817
                                                       Adj R-squared =  0.8345
    Residual    846.207936   239  3.54061898           R-squared     =  0.8359
       Model    4309.55105     2  2154.77552           Prob > F      =  0.0000
                                                       F(  2,   239) =  608.59
      Source         SS       df       MS              Number of obs =     242



CHAPTER 7: MODULARITY AND LABOUR 
PRODUCTIVITY IN FREEBSD

SETTING OF THE PROBLEM
The study of the effect of increasing the number of persons working collectively on 
group performance has a long history in the social sciences. The branch of social 
psychology has long underlined the demotivating effects of increasing group size on 
individual  performance  (e.g.  Ingham  et  al.  1974;  Latané  et  al.  1979),  while 
economists  concerning  themselves  with the  boundaries  of  the firm,  that  is,  the 
extent  of  the  division  of  labour  within  the  firm,  have  drawn  attention  to 
coordination costs as being responsible for decreasing returns to scale (e.g. Coase 
1937; Kaldor 1934; Robinson 1934; Walker 1866; Williamson 1967, 1975, 1985). In 
the realm of software engineering, the negative effect of increasing the number of 
programmers working on a project on group productivity is known as Brooks' Law, 
after Fred Brooks, project manager for the development of the OS 360 operating 
system at IBM. Confronted with a project running late, Brooks attempted to step up 
its development process by assigning more programmers to work on the project. 
This  decision,  however,  only  exacerbated  the  problem,  as  adding  more 
programmers  occasioned  a  further  decrease  of  productivity.  Brooks  (1995) 
pinpointed the problem in the communication and coordination costs attendant on 
increasing the scale of the project. According to his diagnosis, pushing the division 
of tasks beyond a certain point will undoubtedly decrease productivity through the 
overhead  costs  it  entails:  as  more  programmers  are  added,  the  costs  of 
communication and coordination within the group grow exponentially, negatively 
impacting performance, an effect which empirical studies of software development 
have since confirmed time and again (Blackburn & Scudder 1996; BlackBurn et al. 
2006; Boehm 1981). 

The  design  principle  of  modularity  has  been  proposed  as  a  solution  to  this 
problem. As described by Boehm (1981, p. 194), product modularity is  'one very 
powerful technique...to reduce diseconomies of scale by reducing scale'. In specific, 
the  reduction  of  scale  is  accomplished  by  breaking  down  the  product  into 
components  (i.e.  modules)  that  can be developed independently of  one another 
without undercutting the functionality of the product as a whole. By implication, 
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developers can work on different components of the product without concerning 
themselves with what others are doing in the project. As long as they do not need 
to communicate extensively with developers concentrating on other modules, an 
increase  of  group  size  is  no  longer  subject  to  the  exponential  growth  of 
communication and coordination costs that upset Brooks' plans. 

This hypothesis is clearly formulated in Narduzo and Rossi's (2005) discussion of 
the role of modularity in free and open source software (FOSS) development:

A large number of participants in a project may be not a 
sufficient  condition  to  generate  dysfunctional  effects, 
such  as  diminishing  or  negative  marginal  return  of 
manpower to productivity. The key aspect in this regard 
is  represented  by  the  degree  of  task  interdependency 
between the various members belonging to the project. 
Thus,  the  high  productivity...is  largely  due  to  the 
massively modularized structure of the project, enabling 
the existence of highly independent sub-projects  joined 
by a limited number of developers.  

By allowing for modules to be developed independently by autonomous groups 
of developers, product modularity mitigates the adverse effects of increasing scale,  
invalidating thus Brooks' Law. As Osterloh and Rota (2007, p. 166) write, 'with a 
non-modular architecture, having more people involved in a project means higher 
coordination  costs  that  can  in  the  extreme  case,  render  marginal  returns  of 
manpower to productivity negative'. With a modular architecture, on the contrary, 
'the  costs  of  the  production  of  the  source  code  are  also  kept  low.  A  modular 
architecture invalidates “Brooks' Law” that “adding manpower to a late software 
project makes it later”' (Osterloh & Rota 2007, p. 166). Concisely, the organisational 
benefits  that  this  stream  of  the  literature  attributes  to  product  modularity  are 
summed up in the following proposition by Boehm (1981):

Product modularity reduces diseconomies of scale
 

As the mitigation of the adverse effects of  increasing scale implies  a positive 
effect on productivity, the proposition can be alternatively stated as:
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Product  modularity  has  a  positive  effect  on  labour  
productivity in projects characterised by increasing scale  

Given that  the FreeBSD project  is  characterised by an increase of scale over 
time, the proposition can be reformulated as a hypothesis for empirical testing in 
FreeBSD:

Product  modularity  has  a  positive  effect  on  labour  
productivity in FreeBSD   (H3)

Fig. 7.1 illustrates the hypothesised effect in the broader context of the research 
model that encapsulates the hypotheses derived from the literature review:

Fig. 7.1: Research model

Despite the fact that this hypothesis is central to the work of such recognised 
authorities  on  the  economics  of  software  production  as  Boehm,  the  empirical 
confirmation of the claimed benefit is still wanting, as we remarked in our review 
of the modularity literature in chapter 2. To address the dearth of empirical data on 
the productivity gains of modularity, increasingly more investigations turn to the 
analysis of software repositories (e.g. version control systems like CVS or archived 
mailing lists) for data conducive for quantitative study. But unfortunately, we have 
not come across a single empirical study that engages with the problem rigorously 
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enough;103 as a result, analysis remains inconclusive. Against this background, we 
analysed fourteen years of development activity as archived in FreeBSD's software 
repositories with a view to testing this hypothesis.

QUALITATIVE ANALYSIS
Our analysis of descriptive statistics begins with project scale. As Fig. 7.2 illustrates, 
the scale of the project as reflected in the number of developers checking-in code to 
the project repository has expanded dramatically over time: committers increased 
tenfold from 16 committers in 1994 to 198 in 2007. 
 

Fig. 7.2: Committers (src)

     Fig. 7.3: Product evolution (Notes: 1 MB = 1024 KB; 1 KLOC = 1000 LOC) 

103Indicatively, see our criticism of the FOSS studies by Giuri et al. (2008) and Schweik et al. (2008) 
in chapter 2. 
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The dramatic enlargement of project scale can be seen not only in the expansion 
of the base of committers but also in the size of the codebase. As Fig. 7.3 above 
shows, in the space of thirteen years from 1994 to 2007 the product underwent 
463309 changes, as a result of which it grew by 218316 KB, 3034654 source lines of 
code (LOC) and 515 modules. The sheer number of changes made to the product is 
indicative of the magnitude of change it undergoes: averaging 33093 changes per 
year, FreeBSD grows by an average of 22.79% in KB, 39.38% in LOC and 26% in 
modules per annum.   

Having established the remarkable  expansion of  project  scale  over  time,  our 
inquiry can now turn to the analysis of productivity. Let us look at the volume of  
code contributions checked into the codebase (i.e. the modifications made to the 
product) over time in Fig. 7.4: 

Fig. 7.4: Code contributions

We see that starting in 1994 increasingly more code contributions are checked 
into the repository per year, peaking at 51384 in 2003. Thereafter contributions 
manifest a declining tendency, falling down to 21383 in 2007, which, compared to 
1994, represents  an increase of 436% but a decrease of 59% when compared to 
2003. 

Interestingly, we do not find such a sharp reduction of production output when 
looking at the KBs added to the codebase over time (Fig. 7.5 below). We observe 
that  from 2004 onwards the cumulative size  of  new code contributions (in KB) 
increases  steadily,  despite  the  simultaneous  fall  in  the  number  of  code 
contributions. Substituting LOC for KB leads to similar conclusions (Fig. 7.6 below). 
We  see  that  the  LOC  added  to  the  codebase  after  2005  increase,  despite  the 
concurrent decrease of code contributions.     
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Fig. 7.5: KB added to the codebase 

Fig. 7.6: LOC added to the codebase

That  after  2004  the  KB  added  to  the  codebase  increase  steadily  while 
simultaneously  the  code  contributions  decrease  can  be  explained  by  that  code 
contributions  grow  bigger  in  size  during  this  period.  This  is  confirmed  by 
examining  the  proportion of  KB per  code  contribution.  Fig.  7.7  shows that  the 
average size of code contributions (measured in KB) increases after 2004 by 178%.  

Fig. 7.7: KB per code contribution
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Again, substituting LOC for KB leads to the same conclusion. We see that the 
LOC added to the codebase per code contribution increase after 2004 (by 141.3%),  
confirming thus that the average size of code contributions increases in this period, 
as Fig. 7.8 illustrates. 

Fig. 7.8: LOC per code contribution 

Fig. 7.9: Code contributions per committer

Obviously, an analysis of productivity in absolute terms through the prism of 
the  number  and  size  (measured  in  KB  and  LOC)  of  code  contributions 
independently of the number of committers producing them is incomplete, for it 
does not account for the effect of the expansion of the base of committers, which is  
far from irrelevant. As what interests us is  the returns to scale exhibited by the 
production  process,  we  need  to  look  at  average  productivity  as  scale  increases 
(Banker 1984; Banker & Slaughter 1997; Banker et al. 1994; Robinson 1934). That is 
why we looked at the number of code contributions per committer as an indicator 
of average productivity in the project (Fig. 7.9 above). By examining the average 
number of code contributions per committer over time, we see that productivity 
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falls relative to the number of contributors: that is, we observe a steady decrease of  
average productivity.  

On  the  other  hand,  examining  productivity  through  the  size  of  code 
contributions (in KB) relative to the number of committers (Fig. 7.10 below) shows 
a steep fall  from 1995 until  1997, but from 1997 onwards the KB added to the 
codebase are proportionate to the number of committers, tending to plateau around 
an average of 100 KB per committer. Oddly, when looking at average productivity 
through the prism of the KB added per committer, we do not detect such a gradual  
productivity fall as when using the number of code contributions per committer as 
a proxy. By contrast, we observe that average productivity falls abruptly from 1995 
to 1997 and fluctuates since. Equally important, its fluctuations, on account of their 
declining intensity, are flattening out over time. 

Fig. 7.10: KB added per committer 

Fig. 7.11: LOC added per committer

Checking for latent inconsistencies by substituting LOC for KB leads to similar 
conclusions (Fig. 7.11 above). We see that, following an initial sharp fall, from 1997 
onwards  the  average  number  of  LOC added  per  committer  fluctuates,  yet  this 
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fluctuation nowhere resembles the steady decrease we observed when examining 
(in Fig. 7.9) the ratio of code contributions to committers over time. 

Accounting for this discrepancy is that from 2003 onwards increasingly more 
development activity in the FreeBSD project migrated from CVS to Perforce and 
later  on  to  the  Subversion  revision  control  environment  because  of  the  those 
environments'  superior  support  for  parallel  development.  By 2006 Perforce  had 
replaced  CVS  as  the  development  site  of  experimental  features,  while  the 
Subversion server is where development work on the  src tree is currently taking 
place.  However,  CVS  has  not  been  abandoned  as  a  result  of  this  migration  of 
development  activity  to  other  revision  control  environments:  functionality 
developed in Perforce is merged into CVS when it is considered mature enough; 
and the src tree (that Subversion is used for) is automatically exported to CVS for 
distribution purposes.104 That is  why the number of code contributions (checked 
into CVS) is decreasing steadily since 2003, while the LOC and KB added to it do  
not. Modifications checked into the Perforce repository are not back-ported one by 
one; instead, a set of interrelated modifications that are considered mature enough, 
are bundled together and committed to CVS as one big modification. The practice 
of committing as small changes to the repository as is possible is the technical norm 
in FOSS projects on account of facilitating trouble-shooting: when changes to the 
codebase are small, it is easier to pinpoint which one is responsible for a breakdown 
in  product  integration  ('broken  build'  in  FreeBSD  terminology)  and  reverse  it 
(FreeBSD 2011a; Holck & Jørgensen 2003/2004, p. 46; Kroah-Hartman 2005).105 For 
FreeBSD committers, as Holck and Jørgensen (2003/2004, p. 46) explain, 'working 
with  small  changes  is  a  consequence  of  the  obligation  to  integrate  one's 
contributions': for 'the obligation to preserve the development in a working state 

104According to the FreeBSD Committer's Guide (2011a), 'as of June 2008, Subversion is used for 
the  src tree...the  src tree is automatically exported to CVS for compatibility reasons only (e.g.  
CVSup). The “official” src repository is not stored in CVS but in Subversion'. As regards the role 
of Perforce in FreeBSD development,  Scott  Long (2010), committer since 2000, former Core 
Team member and former head of the Release Engineering team, explains that it is currently 
being used 'to manage experimental projects' which are not ready for the main repositories. Also, 
see  the  FreeBSD  News  Flash  entry  for  3  June  2008  at 
<http://www.freebsd.org/news/2008/index.html>;  Watson  (2006);  Wemm  (2008);  and  the 
'Subversion Primer' at <http://wiki.freebsd.org/SubversionPrimer>. 

105Committers are expected to break up their changes. The  FreeBSD Committer's Guide advises 
committers to 'avoid committing several unrelated changes in one go. It makes merging difficult, 
and also makes it harder to determine which change is the culprit if a bug crops up' (FreeBSD 
2011a). This is similar to other large FOSS projects like Linux, for example, where changes must 
be  'broken  up  into  tiny,  individual  portions'  as  that  practice  makes  it  easier  to  verify  the 
correctness of changes and 'debug when something goes wrong' (Kroah-Hartman 2005). 
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could be seen as implying an implicit rule saying: avoid the introduction of large 
and complex new features'. But as changes are now being tested in Perforce and 
Subversion and merged into CVS when they are mature enough, there is no reason 
for keeping one's changes to CVS small: changes tried out in Perforce or Subversion 
can be lumped together and committed as one big change in CVS. This explains 
why the number of contributions logged onto CVS decreases steadily after 2003, 
while the LOC and KB added to the codebase do not.106 

Given that our quantitative analysis is based on activity logs collected from CVS 
alone, the practical implications for the purposes of our analysis of this migration 
from one development environment to another (i.e. from CVS to Subversion and 
Perforce) – and the modification of development practice this implies as changes 
are no longer committed individually to CVS but in bundles – is that the number of 
code contributions checked into the CVS repository is an inferior indicator of the 
rate of technical change in the project compared to the LOC or KB added to the 
codebase. For the same reason, the LOC and KB added per committer make for 
more  robust  indicators  of  average  productivity  than  the  number  of  code 
contributions per committer. And so it is on these proxies that our analysis shall be 
based from now on.      

LOC added per committer Propagation cost (%)
Fig. 7.12: Average productivity versus complexity

All  the  same,  our  analysis  of  descriptive  statistics  shows  that  average 

106We are grateful to the FreeBSD developers in attendance at the T-Dose conference in 3 October 
2009 in Eindhoven for clarifying the implications of the migration of development activity from 
CVS to Perforce and Subversion.  
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productivity falls over time and that its tendential fall is paralleled by higher levels 
of  complexity  (as  indicated  by  the  tendency  for  the  propagation  cost  to  rise).  
Contrasting the LOC added per committer to the codebase with its propagation cost 
in Fig. 7.12 above suggests that higher levels of complexity are correlated with a fall 
in labour productivity.   

It  follows  from  the  definition  of  product  modularity  as  'a  technical  and 
organisational way to manage complexity' (Osterloh & Rota 2007, p. 160) that an 
increase of complexity amounts to a reduction of modularity.107 Observing therefore 
the tendency for the propagation cost to rise hints at a deterioration in the levels of  
modularity.  Consequently,  in  consideration  of  the  parallel  fall  in  the  levels  of 
productivity and modularity over time, our analysis so far supports the hypothesis 
that modularity has a positive effect on labour productivity. However, as the impact 
of modularity can be more rigorously examined at the level of individual modules, 
it is to their quantitative analysis that we turn now. 

QUANTITATIVE ANALYSIS
To examine  the  effect  of  modularity  on  productivity  at  the  level  of  individual 
modules, we conducted a regression analysis, using the same dataset as in testing 
H2 and  H2R, consisting of a stratified random sample of 29 FreeBSD modules 108 
with observations spanning fourteen years of development activity from 1994 to 
2008. For the test, we used the number of  KB added per committer as dependent 
variable  and  integrality_index_lag as  independent  variable.  As  in  the  tests 
performed in chapter 6, first, the predictor was lagged a year in order to test the 
effect of modularity in year=t on average labour productivity in year=t+1 (since this 
transformation reflects more faithfully the logical order of the hypothesised causal 
relationship  [that  is,  if  A  causes  B,  then  A precedes  B]  and  so  by  establishing 
directionality  it  allows  a  refinement  of  the  empirical  model)  and  second,  the 

107The  system-level definition of modularity emphasises decomposability, that is, independence of 
components (i.e. modules). As the emphasis is put on reducing, if not eliminating, interactions  
between components, modularity is equivalent to a reduction of complexity at the system-level.  
The component-level definition of modularity, on the other hand, stresses information hiding, that 
is, encapsulation (i.e. localisation) of interactions within components. It follows from these two 
definitions  that  the  reduction  of  complexity at  the  system-level  is  accomplished  through  the 
encapsulation  of  interactions  within  components,  as  a  result  of  which  components'  internal 
complexity increases.   

108See section  Sample selection in  chapter 3 for a description of the procedure used for sample 
selection. 
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intraclass  correlation  between  observations  pertaining  to  the  same  module  was 
taken into account by using the group variable module in the regression analysis.109 
Fig. 7.13 illustrates the empirical model: 

Fig. 7.13: Empirical model H3

The test however indicated no model significance (p = ns):

Table 7.1: Regression results–Effect of Modularity on Productivity

We repeated the test, using LOC added per committer as dependent variable but 
again the analysis indicated no model significance (p =  ns). As an alternative test, 
we  resorted  to  testing  the  model  with  propagation_cost_lag as  predictor,  but 
neither did that test indicate model significance (p = ns).  Based on the results of our 
statistical tests up to this point, we find no empirical support for the hypothesis that 
modularity has a positive effect on labour productivity.

Scale considerations
To ensure that the effect of scale was not overlooked, we repeated the above tests, 

109The group variable is retained throughout all regression analyses presented in this chapter.
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         rho    .56413937   (fraction of variance due to u_i)
     sigma_e    3.7915038
     sigma_u    4.3135107
                                                                              
       _cons     2.035681   .9299735     2.19   0.029     .2129659    3.858395
integrali~ag     .0263804   .0897726     0.29   0.769    -.1495707    .2023315
                                                                              
D_KB_per_c~r        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.7689
Random effects u_i ~ Gaussian                   Wald chi2(1)       =      0.09

       overall = 0.0153                                        max =        13
       between = 0.0560                                        avg =       8.3
R-sq:  within  = 0.0058                         Obs per group: min =         4

Group variable: module                          Number of groups   =        29
Random-effects GLS regression                   Number of obs      =       242



using the median of committers to differentiate between conditions of large-scale 
and  small-scale  development.  As  the  median number  of  committers  is  eight,  a 
small-scale  development  process  is  reflected  in  years  that  fewer  than  nine 
committers participate in the development process of a module (i.e. committers < 
9),  while  large-scale  is  reflected in  years  in which the number  of  participating 
committers  exceeds  eight  (i.e.  committers  >  8).  Thus,  to  examine  the  effect  of  
modularity on average productivity under conditions of large-scale development, 
we conducted a  regression analysis  with  KB added per  committer as dependent 
variable  and  integrality_index_lag as  independent  variable,  excluding  years  in  
which committers are fewer than nine. The test indicated strong model significance 
(p < 0.050):

Table 7.2:  Regression results–Effect of Modularity on Productivity in Large-scale 
conditions (Condition: if committers > 8)

The coefficient for integrality_index_lag is significant and negative, suggesting 
thus that an increase in integrality_index_lag leads to a decrease in the KB added 
per committer. Hence, higher levels of modularity result in an increase in average 
productivity in large-scale development settings.

Substituting LOC added per committer for KB added per committer (see Table 
7.3  below)  yields  similar  results  (p  <  0.005).  Again,  the  coefficient  for 
integrality_index_lag  is  negative  and  significant,  suggesting  that  an  increase  of 
integrality_index_lag results in a decrease of the LOC added per committer. That is  
to say, higher levels of  modularity bring about a rise in average productivity in 
conditions of large-scale development.
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         rho            0   (fraction of variance due to u_i)
     sigma_e    2.9439646
     sigma_u            0
                                                                              
       _cons     2.577659   .4789321     5.38   0.000     1.638969    3.516349
integrali~ag    -.2352893   .1161769    -2.03   0.043    -.4629918   -.0075867
                                                                              
D_KB_per_c~r        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0428
Random effects u_i ~ Gaussian                   Wald chi2(1)       =      4.10

       overall = 0.0333                                        max =        13
       between = 0.1901                                        avg =       5.0
R-sq:  within  = 0.0227                         Obs per group: min =         1

Group variable: module                          Number of groups   =        24
Random-effects GLS regression                   Number of obs      =       121



Table 7.3: Regression results–Effect of Modularity on Productivity in Large-scale 
conditions (Condition: if committers > 8)

To summarise our results so far, both tests show that modularity has a positive 
effect on average labour productivity in the context of large-scale development.

Subsequently  to  testing  the  effect  of  modularity  on  average  productivity  in 
conditions of large-scale development work, we proceeded to examine the effect of 
modularity on productivity in small-large development environments. To do so, we 
performed a regression analysis with KB added per committer as dependent variable 
and  integrality_index_lag as independent variable, but we now excluded years in  
which committers exceed eight. The test however indicated no model significance 
(p = ns):110

Table 7.4: Regression results–Effect of Modularity on Productivity in Small-scale 
conditions (Condition: if committers < 9) 

110Nor did testing the model with LOC added per committer as dependent variable (p = ns).

152

         rho            0   (fraction of variance due to u_i)
     sigma_e    116.41532
     sigma_u            0
                                                                              
       _cons     81.71068   18.12706     4.51   0.000     46.18229    117.2391
integrali~ag    -13.85818   4.397171    -3.15   0.002    -22.47647   -5.239882
                                                                              
D_LOC_per_~r        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0016
Random effects u_i ~ Gaussian                   Wald chi2(1)       =      9.93

       overall = 0.0770                                        max =        13
       between = 0.2837                                        avg =       5.0
R-sq:  within  = 0.0006                         Obs per group: min =         1

Group variable: module                          Number of groups   =        24
Random-effects GLS regression                   Number of obs      =       121

         rho    .75071836   (fraction of variance due to u_i)
     sigma_e    3.8494375
     sigma_u    6.6802182
                                                                              
       _cons     2.585224   1.521417     1.70   0.089    -.3966982    5.567146
integrali~ag     .0071944   .1102143     0.07   0.948    -.2088216    .2232104
                                                                              
D_KB_per_c~r        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.9480
Random effects u_i ~ Gaussian                   Wald chi2(1)       =      0.00

       overall = 0.0134                                        max =        10
       between = 0.0150                                        avg =       5.0
R-sq:  within  = 0.0014                         Obs per group: min =         1

Group variable: module                          Number of groups   =        24
Random-effects GLS regression                   Number of obs      =       121



  
In  contrast  to  the  results  of  the  tests  focusing  on  large-scale  development 

(Tables 7.2, 7.3), the last test (Table 7.4) suggests that modularity has no significant 
effect on average productivity in small-scale development settings. 

In summary, finding no significant effect of modularity on average productivity 
in  the  statistical  tests  that  focus  on  small-scale  development  leads  us  to  the 
conclusion  that  product  modularity  has  no  significant  effect  on  average 
productivity  in  conditions  of  small-scale  development.  By  contrast,  the  tests 
centred  on  large-scale  development  conditions  consistently  indicate  that 
modularity has a positive effect on average productivity. 

An eventuality that cannot be excluded in attempting to come to grips with the 
absence of a quantitatively perceptible effect of modularity on labour productivity 
when the scale of development remains small (i.e. participation is limited to fewer 
than nine committers) is that the claimed productivity benefits of modularity are 
being  eroded  by  the  increased  development  costs  attendant  upon  the 
modularisation process. As an empirical study of seventy-five (Java) FOSS projects 
concluded, modularity 'represents an important managerial variable to implement 
the more open governance approach that characterizes OS projects', which, in turn,  
inflates development costs (Capra et al. 2008, p. 765). In fact, there is evidence to 
the effect  that  the development cost  of  a reusable modular software component 
could be as much as ten times higher than that of a non-modular one (Garud & 
Kumaraswamy 1995, p. 97). Nor should coordination costs closely tied to widening 
the scope of experimentation and variation through modular product structures be 
ignored: making effective use of the economies of substitution enabled by modular 
product structures is not devoid of management overhead (Garzarelli & Galoppini 
2003).  In  short,  the  modularisation  process  entails  significant  development  and 
maintenance costs: its benefits, as a result, become visible only when the scale of 
development has been so enlarged that the need to mitigate the adverse effects of  
increasing  scale  takes  on  a  pressing  character.  The  benefits  of  modularity  out-
weight  its  costs  in  conditions  of  large-scale  development  because  it  is  only  in 
circumstances where decreasing returns to scale become an issue that the potential 
of modularity can be fully realised.

In view of these results, we find so far strong empirical support for hypothesis 
H3, according to which modularity has a positive effect on labour productivity in  
FreeBSD. 
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EFFECT  OF  MODULARITY  ON  CORE  DEVELOPERS  
PERFORMANCE

To delve more deeply into the effect of modularity on productivity, our analysis  
turns  to  the  performance  of  core  developers.  It  follows  directly  from  the 
fundamental premise of Brooks' Law (i.e. as more persons are added to the group, 
the potential  interpersonal  communication paths rise  exponentially)  that  adding 
more persons to work on a software project affects negatively the productivity of its 
core developers by forcing them to channel part of their time into coordinating 
their tasks with those performed by new members.  It  is  therefore important, as 
modularity is employed with the aim of mitigating the negative effects of increasing 
group size on productivity, to probe also its  impact on the performance of core  
developers. 

To do this, we performed a regression analysis, using the same dataset as in all 
previous statistical tests, with the number of code contributions made by the  top  
two committers for each module as dependent variable, which we use as our first 
indicator  of  core  developers'  output  in  individual  modules,111 and 
integrality_index_lag as  independent  variable.  Fig.  7.14  illustrates  the  empirical 
model:  

Fig. 7.14: Empirical model

However,  as  can  be  seen  in  Table  7.5  below,  the  test  indicated  no  model 
significance (p = ns).112

111 Of course, years in which modules were developed by fewer than three committers were excluded 
from the regression analysis.   

112Nor did the test with the contributions of the top ten percent of committers as dependent variable  
(p  =  ns),  which  we  used  as  an alternative  indicator  of  core  developers'  output  in  individual  
modules. 
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Table 7.5: Regression results–Effect of Modularity on Core Developers Output 
(Condition: if committers > 2)

Following this  step,  we attempted to refine the empirical  model by drawing 
upon  the  results  of  testing  H1 and  H2.  So,  propagation_cost_lag  and 
ext_dependencies_lag were  added  as  independent  variables.  To  control  for 
environmental  factors,  as  when  testing  H1 and  H2,  the  variables  propagation  
cost_j_lag,  ext_dependencies_per_mod_j_lag and  maturity_ln were included too. 
Fig. 7.15 illustrates the expanded empirical model: 

Fig. 7.15: Expanded empirical model 

However, neither this regression analysis indicated model significance (p = ns). 
As no indicator of modularity was found to have a significant effect, it suggests that 
core developers' output is not affected by modularity. 
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         rho    .59940952   (fraction of variance due to u_i)
     sigma_e     64.16151
     sigma_u    78.484894
                                                                              
       _cons     69.98846   17.18699     4.07   0.000     36.30259    103.6743
integrali~ag    -1.336736   1.715052    -0.78   0.436    -4.698177    2.024705
                                                                              
top_2_comm~s        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.4357
Random effects u_i ~ Gaussian                   Wald chi2(1)       =      0.61

       overall = 0.0894                                        max =        13
       between = 0.1383                                        avg =       7.9
R-sq:  within  = 0.0012                         Obs per group: min =         3

Group variable: module                          Number of groups   =        29
Random-effects GLS regression                   Number of obs      =       229



Scale considerations
To come to grips with the absence of a perceptible effect of modularity on core 
developers'  output and to verify the robustness of this finding,  we attempted to 
further refine the analysis by differentiating between conditions of large-scale and 
small-scale development. Modifying the prism of analysis in this manner ensures 
that the effect of the scale of development is not ignored, enabling us to contrast 
the impact of modularity (on core developers' output) under conditions of large-
scale development with its impact in conditions of small-scale development. To do 
this, the median of committers was the criterion used to disaggregate large-scale 
from  small-scale  development  conditions:  that  is,  as  the  median  number  of 
committers is  eight, a small-scale development process is reflected in years with 
fewer than nine committers, while years in which committers exceed eight reflect a 
large-scale development process. Thus, to examine the effect of modularity on core 
developers'  output  in  conditions  of  large-scale  development,  we  carried  out  a 
regression analysis with the contributions of the top two committers as dependent 
variable  and  propagation_cost_lag,  ext_dependencies_lag,  integrality_index_lag,  
propagation_cost_j_lag,  ext_dependencies_per_mod_j_lag and  maturity_ln as 
independent variables, excluding years in which committers are fewer than nine. 
 

Table 7.6: Regression results–Effect of Modularity on Core developers output in 
Large-scale conditions (Condition: if committers > 8)
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         rho    .20422506   (fraction of variance due to u_i)
     sigma_e    85.478453
     sigma_u    43.302807
                                                                              
       _cons     184093.7   74030.14     2.49   0.013      38997.3    329190.1
 maturity_ln    -24208.13   9746.463    -2.48   0.013    -43310.85   -5105.413
ext_de~j_lag      .387209   1.660828     0.23   0.816    -2.867954    3.642372
propag~j_lag    -324.2617   281.7503    -1.15   0.250    -876.4822    227.9589
integrali~ag    -15.97723   4.875752    -3.28   0.001    -25.53353   -6.420933
ext_de~s_lag     1.151737   .3652911     3.15   0.002     .4357791    1.867694
propag~t_lag    -14.98715   140.1516    -0.11   0.915    -289.6793     259.705
                                                                              
top_2_comm~s        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0006
Random effects u_i ~ Gaussian                   Wald chi2(6)       =     23.50

       overall = 0.3348                                        max =        13
       between = 0.4094                                        avg =       5.0
R-sq:  within  = 0.0137                         Obs per group: min =         1

Group variable: module                          Number of groups   =        24
Random-effects GLS regression                   Number of obs      =       121



The test  indicated strong model  significance (p < 0.001).  As Table 7.6 above 
shows, integrality_index_lag has a significant effect on the contributions of the top 
two committers. Specifically, the coefficient for integrality_index_lag is negative, 
suggesting that higher levels of modularity result in an increase of core developers' 
output. 

Testing the model with the contributions of the top ten percent of committers 
(which we used as an alternative indicator of core developers' output in individual 
modules) as dependent variable reinforces the conclusions drawn from the last test 
(p < 0. 050):

Table 7.7: Regression results–Effect of Modularity on Core developers output in 
Large-scale conditions (Condition: if committers > 8)

Consistent  with  the  last  test,  the  coefficient  for  integrality_index_lag  is 
significant and negative,  suggesting that higher levels of modularity result in an 
increase  of  core  developers'  output.  Crucially  enough,  testing  the  effect  of 
modularity on core developers'  output  in conditions  of  large-scale  development 
indicates  that  higher  levels  of  modularity  bring  about  an  increase  of  core 
developers' output. 

Having therefore ascertained that modularity has a positive effect on the output 
of core developers under conditions of large-scale development, we proceeded to 
test  the  relationship  between  these  two  variables  in  conditions  of  small-scale 
development.  So,  we  carried  out  a  regression  analysis  as  before  with  the 
contributions  of  the  top  two  committers as  dependent  variable  and 
propagation_cost_lag,  ext_dependencies_lag,  integrality_index_lag,  
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         rho    .36993669   (fraction of variance due to u_i)
     sigma_e    80.349718
     sigma_u    61.568131
                                                                              
       _cons     148969.9   73107.03     2.04   0.042     5682.793    292257.1
 maturity_ln    -19593.51   9624.728    -2.04   0.042    -38457.63   -729.3926
ext_de~j_lag     1.464094    1.53372     0.95   0.340    -1.541941    4.470129
propag~j_lag    -522.8809    261.317    -2.00   0.045    -1035.053   -10.70893
integrali~ag    -12.15148   5.038609    -2.41   0.016    -22.02697    -2.27599
ext_de~s_lag     1.255546   .3982866     3.15   0.002      .474919    2.036174
propag~t_lag    -39.14691   145.3022    -0.27   0.788    -323.9339    245.6401
                                                                              
top_10perc~t        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0057
Random effects u_i ~ Gaussian                   Wald chi2(6)       =     18.23

       overall = 0.3437                                        max =        13
       between = 0.3755                                        avg =       5.0
R-sq:  within  = 0.0289                         Obs per group: min =         1

Group variable: module                          Number of groups   =        24
Random-effects GLS regression                   Number of obs      =       121



propagation_cost_j_lag,  ext_dependencies_per_mod_j_lag and  maturity_ln as 
independent variables, except that we now excluded years in which committers are  
fewer than two and more than eight. The test however found no significant effect 
of any predictor on core developers' output (p = ns):113 

Table 7.8: Regression results–Effect of Modularity on Core developers output in 
Small-scale conditions (Condition:  if 2 < committers < 9)

To sum up, both tests focusing on large-scale development conditions (Tables  
7.6,  7.7)  indicate  that  modularity  has  a  positive  effect  on  the  output  of  core 
developers. By contrast, the tests centred on small-scale development conditions 
(Tables 7.8) suggest that modularity has no significant effect on core developers. To 
understand why, one needs to contrast the work process of core developers of large-
scale  projects  with  that  of  core  developers  in  small-scale  projects.  The  key 
difference is that core developers specialise far more in large-scale projects than in 
small-scale ones. The extent of their specialisation is, of course, in the first place 
determined by the  learning  costs  involved in  familiarising  themselves  with the 
codebase  and  grasping  all  possible  interactions.  As  such,  core  developers' 
specialisation is an adaptation to increased scale: it is the strategy they employ to 
cope with the gigantic learning costs attendant on large codebases. 

On  the  contrary,  core  developers  of  small-scale  projects,  regardless  of  their 
degree  of  decomposability  (i.e.  the  extent  that  the  software  product  can  be 

113Nor did testing the model with the code contributions of the top ten percent of committers as 
dependent variable (p = ns).
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         rho    .57710171   (fraction of variance due to u_i)
     sigma_e    61.653693
     sigma_u    72.022354
                                                                              
       _cons     55436.58   35294.71     1.57   0.116    -13739.77    124612.9
 maturity_ln    -7281.522   4646.604    -1.57   0.117     -16388.7    1825.655
ext_de~j_lag     .1639511   .7860096     0.21   0.835    -1.376599    1.704502
propag~j_lag    -120.8887   120.3114    -1.00   0.315    -356.6946    114.9173
integrali~ag    -1.883918   1.632277    -1.15   0.248    -5.083123    1.315286
ext_de~s_lag     .3505202    .236859     1.48   0.139    -.1137149    .8147553
propag~t_lag    -71.31229   71.93099    -0.99   0.321    -212.2944    69.66986
                                                                              
top_2_comm~s        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0623
Random effects u_i ~ Gaussian                   Wald chi2(6)       =     11.98

       overall = 0.1897                                        max =        13
       between = 0.3087                                        avg =       8.3
R-sq:  within  = 0.0272                         Obs per group: min =         4

Group variable: module                          Number of groups   =        29
Random-effects GLS regression                   Number of obs      =       242



decomposed  into  components,  which  can  be  developed  independently  of  each 
other), are typically familiar with the entire codebase. Their participation is  not 
only extensive but also many-sided, encompassing most, if not all, activities in the 
project. However, as the scale of the project expands – that is, as more developers 
are added to the project and the codebase grows bigger – grasping the totality of the 
development process becomes exceedingly difficult. Consequently, core developers 
can remain on top of development work only by specialising in some domain(s) of 
the  codebase.  Thus,  a  spontaneous  division  of  labour  emerges  among  core 
developers  out  of  their  choice  to  focus  their  participation  on  that  part  of  the 
codebase  with  which  they  are  most  familiar.  This  'separation  of  concerns'  is 
reinforced  by  modular  product  design:  the  reduction,  if  not  elimination,  of 
interactions between components (modules) effected through the modularisation 
process helps ensure that core developers do not need to occupy themselves with 
activities concerning any areas of the codebase other than those which form the 
epicentre of their interest. 

In small-scale projects, on the other hand, where such a 'separation of concerns' 
is not considered necessary or desirable, it is immaterial to core developers' work 
process whether product design is modular or not. Insofar as core developers can 
keep themselves familiar with the entire codebase, the impetus for specialisation is 
lacking.  Consequently,  as  long as  conditions of small-scale development prevail, 
core  developers'  participation in code production is  not  subject  to  a  division of 
labour, but spans the entire codebase. That is why the regression analysis found no 
significant  effect  of  modularity  on  core  developers'  output  in  small-scale,  as 
opposed  to  large-scale  development  settings.  While  understanding  and  keeping 
track of all possible component interactions (i.e. dependencies between modules) in 
a small-scale project may be both desirable and feasible for its core developers, it is  
by  no  means  possible  for  the  core  developers  of  large  FOSS  projects,  such  as 
FreeBSD or Linux, to do so. Enlarging the scale of the project militates in favour of 
extending core developers' specialisation. Thus alone can they maintain their code 
leadership position when confronted with the cognitive difficulties  that  keeping 
oneself familiar with a large codebase entails. Modular product design reinforces 
the already existing tendency of core developers toward specialisation in large-scale 
development  settings  by  facilitating  the  independent  development  of  distinct 
product components (modules), helping ensure thus a scalable self-assignment to 
tasks.
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CONCLUDING REMARKS
All statistical tests performed in this chapter indicate that in  conditions of large-
scale development modularity has a positive effect on average labour productivity 
as well as on the performance of core developers.  In consequence of the strong 
empirical  support  these  results  provide  for  the claimed effect  of  modularity  on 
labour productivity in projects characterised by expanding scale,  hypothesis H3 is  
verified.

In the next chapter, we put Brooks' Law to the test by examining the effect of 
expanding  group  size  on  labour  productivity  in  the  development  process  of 
FreeBSD. 
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CHAPTER 8: DOES BROOKS' LAW HOLD IN 
FREEBSD?

INTRODUCTION
Observing  in  Fig.  8.1  that  in  the  course  of  thirteen years  of  development,  the 
committers' base has grown from 17 persons to about 200 and average productivity 
has  decreased  by  eighty-five  percent114 is  suggestive  of  the  negative  effect  of 
increasing group size on labour productivity known as Brooks' Law. 

Committers LOC added per committer
Fig. 8.1: Committers (src) versus average productivity

In barest outline, this theory holds that adding more developers to a software 
development  project  occasions  a  fall  in  group  productivity  due  to  the 
communication and coordination costs that increasing group size entails  (Brooks 
1995). The cause of the problem is that as more persons are added to the developers' 
group, 'the potential interpersonal communication paths or interactions, which can 
lead  to  diseconomies  of  scale',  grow  exponentially.  In  consequence,  'the  more 
individuals that are added to a team, the more of each individual's time is consumed 
in communication with other team members about updating common information, 
handling errors, or resolving the use of shared resources' (Boehm 1981, p. 190; see 

114In specific, by eighty-five percent in LOC and eighty-four percent in KB.

161

1994
1995

1996
1997

1998
1999

2000
2001

2002
2003

2004
2005

2006
2007

0

50

100

150

200

250

1994
1995

1996
1997

1998
1999

2000
2001

2002
2003

2004
2005

2006
2007

0

2000

4000

6000

8000

10000

12000



also section The productivity paradox in software development in chapter 2). As the 
increase in inputs (i.e. developers) to the software production process results in a 
less than proportionate increase in outputs (i.e. code contributions, LOC or KB), the 
production process exhibits decreasing returns to scale: average labour productivity 
in the project declines. Stated as a hypothesis to be tested in FreeBSD: 

An increase of  contributors to FreeBSD has a negative  
effect on labour productivity    (H4) 

Fig.  8.2  illustrates  how  H4 fits  into  the  research  model  that  sums  up  the 
literature review:

Fig. 8.2: Research model

To put H4 to the test, we conducted a regression analysis, using the same panel  
dataset  as  in  all  previous  statistical  tests,  with  the  number  of  KB  added  per  
committer as  dependent  variable  and  committers as  independent  variable.  The 
intraclass  correlation  between  observations  pertaining  to  the  same  module  was 
taken into account by using the group variable module. To control for the effect of 
modularity, we included integrality index in the regression. To make sure that both 
independent variables can be included in the regression, we ran a VIF test, whose 
results  confirmed  it.  Since  the  VIF  value  for  committers  and  integrality  index 
(which is 1.08) is smaller than 10, there is no problem including both predictors in 
the model. 
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         Variable |       VIF       1/VIF  
------------------+----------------------
       committers |      1.08    0.925636
integrality_index |      1.08    0.925636
------------------+----------------------
         Mean VIF |      1.08
Table 8.1: VIF test for regression of KB added per committer on committers 

and integrality index

 Fig. 8.3 illustrates the empirical model:

Fig. 8.3: Empirical model H4

The test indicated strong model significance (p < 0.050):

Table 8.2: Regression results–Effect of Contributors on Productivity

As the coefficient for committers is negative and significant, it indicates that an 
increase of committers brings about a fall in average productivity. The test found no 
significant effect of integrality index on the number of KB added per committer,  
thus indicating that modularity does not affect average productivity.

Substituting  LOC added per committer for KB added per committer increases 
the model's significance (p < 0.001):
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         rho    .06256009   (fraction of variance due to u_i)
     sigma_e    55.392992
     sigma_u    14.309742
                                                                              
       _cons     30.69374    8.22837     3.73   0.000     14.56643    46.82105
integralit~x    -1.165949   .8396305    -1.39   0.165    -2.811594    .4796967
  committers    -1.527133   .5712941    -2.67   0.008    -2.646849    -.407417
                                                                              
D_KB_per_c~r        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0205
Random effects u_i ~ Gaussian                   Wald chi2(2)       =      7.78

       overall = 0.0230                                        max =        14
       between = 0.0340                                        avg =       9.3
R-sq:  within  = 0.0406                         Obs per group: min =         5

Group variable: module                          Number of groups   =        29
Random-effects GLS regression                   Number of obs      =       271



Table 8.3: Regression results–Effect of Contributors on Productivity

Again, the coefficient for committers is negative and significant, suggesting that 
an increase of contributors to a module results in a decrease of the LOC added per  
committer, that is, a fall in productivity, confirming thus Brooks' prognosis. Also, as 
in the previous test,  modularity does not  appear to  have a  significant effect  on 
productivity. 

Summing up our results so far, both tests indicate that increasing group size has 
a negative effect on average labour productivity, thus confirming the hypothesis we 
referred to in chapter 2 as Brooks' Law: the tendency for productivity in a group of 
software developers to decline when more developers are added to the group.  

DISAGGREGATING  CORE  DEVELOPERS'  
PRODUCTIVITY 

To gain further insight into this phenomenon, we attempted to disaggregate the 
productivity  of  core  developers  from  the  broader  base  of  committers  so  as  to 
ascertain whether the fall in average productivity in the development process is due 
to a fall in the output of core developers115 or a disproportionate increase of 'lower-
contribution' committers. To operationalise this inquiry, we counted the number of 
code contributions checked into the codebase per year by the ten most productive 
committers  in  that  year  and  contrasted  it  with  the  total  number  of  code 

115We use the characterisation core developers to refer to 'high-contribution' committers, though the 
FreeBSD project does not use this term on the grounds that it can mislead one to conflate prolific  
committers  with  core  team  members  (see  FreeBSD  committer  Greg  Lehey's  comments  in 
Slashdot 2003).     
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         rho    .07231657   (fraction of variance due to u_i)
     sigma_e     1029.994
     sigma_u    287.57671
                                                                              
       _cons     811.6442   160.6655     5.05   0.000     496.7456    1126.543
integralit~x    -28.14489   16.36132    -1.72   0.085    -60.21249    3.922709
  committers     -43.7585    11.1319    -3.93   0.000    -65.57661   -21.94038
                                                                              
D_LOC_per_~r        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0003
Random effects u_i ~ Gaussian                   Wald chi2(2)       =     16.19

       overall = 0.0355                                        max =        14
       between = 0.0018                                        avg =       9.3
R-sq:  within  = 0.1193                         Obs per group: min =         5

Group variable: module                          Number of groups   =        29
Random-effects GLS regression                   Number of obs      =       271



contributions over time in Fig. 8.4. 

Fig. 8.4: Code contributions by top 10 committers versus all code contributions

Looking at the graph, we observe first that the production output of the ten 
most productive committers manifests exactly the same fluctuations as that of all  
committers considered as a group. Second, it manifests no visible sign of a negative  
effect caused by the historical growth of the group of committers. To illustrate,  
consider the growth of committers in comparison with the code contributions made 
by the top ten committers in Fig. 8.5:

Fig. 8.5: Code contributions by top 10 committers versus all committers

Yet if the dramatic enlargement of project scale that is reflected in the expansion 
of  the  committers  group  has  not  had  a  negative  effect  on  the  output  of  core 
developers,  this  means  that  either  core  developers  work  on  the  project  for 
increasingly longer hours over time (so that the time and effort they expend in 
communicating  and  coordinating  their  activities  with  other  project  participants 
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does not come at the expense of the time and effort they devote to producing code) 
or their work is  not  burdened with higher coordination costs due to increasing 
group size, as Brooks' Law predicts. 

To find out, we decided to do a survey. First, we identified the 58 individuals 
that populated the ranks of the top ten committers over time. We found a valid  
email address for 53 of them and sent them an email questionnaire designed to find 
out whether the amount of time they spend on the project increases over time and 
to  what  extent  that  is  due  to  non-coding  activities  (e.g.  time  spent  on 
coordinating).116 This  attempt  generated  a  52.8%  response  rate.  Of  the  28 
committers who replied, more than half (53.5%) remarked the tendency to spend 
more time over time. With respect to the stretch of non-coding tasks, half of the 
respondents  (50%) noted  that  their  peak  activity  periods  were  accompanied  by 
increased non-coding tasks. These answers highlight how time-demanding it is to 
be a core developer and in parallel how unlikely it is for core developers to abstain 
from  non-coding  activities,  focusing  only  on  coding.  The  burden,  however,  of 
dealing with non-coding tasks is often seen as a natural consequence of widening 
one's extent of participation in the project. The coordination costs burdening the 
work of core developers are not experienced as a result of the historical expansion 
of the committers group, but as a consequence of the scope of coding tasks they 
have self-selected.  It  is  not  uncommon of  developers  to start  on the project  by 
making changes to relatively self-contained areas of the codebase (such as modules 
that are not part of the core system), but turn over time to coding tasks of a larger 
scope, which affect the work of many more developers. Consequently, the need to 
coordinate changes with other developers increases in proportion to the scope of 
coding tasks one tackles.117 That this perspective traces the cause of coordination 
costs to the scope of one's coding activities should not be construed as implying that 
coordination costs are independent of the overall scale of the project; rather, their  
relationship is mediated by the scope of coding tasks committers choose to work on. 
It  is  important  to  note  at  this  point  that  of  the  fifty-eight  committers  who 
populated the ranks of the ten most productive committers in the space of thirteen  
years, only three have sustained this level of performance for ten years or more. 
The average number of years one is part of the group is 3.5. Obviously, being a core 
developer implies such an expenditure of time that only few committers are in the 
position to shoulder for extended periods. Given that working long hours has been 

116A more elaborate description of the procedure used to analyse the replies thus collected is given in  
Appendix IV: Core developers survey.  

117We are indebted to FreeBSD committer Nate Lawson for pointing this out. 
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a  constant  factor  for  core  developers  and  their  collective  output  manifests  no 
tendency to fall over time, we are led to the conclusion that the coordination costs 
brought about by the expansion of the committers group have not so far affected 
negatively core developers performance. 

To recap, as the increase of committers  has  not  brought about a fall  in core 
developers' output, our analysis of descriptive statistics suggests that the marked fall  
in  average  productivity  is  caused  by  the  disproportionate  increase  of  low-
contribution committers in the group, rather than by a decrease of core developers'  
productivity. In order to study in a more rigorous manner the effect of group size 
on  core  developers,  we  proceed  now  to  a  quantitative  analysis  at  the  level  of 
individual modules. 

EFFECT  OF  GROUP  SIZE  ON  CORE  DEVELOPERS  
PERFORMANCE

To examine the effect of group size on the production output of core developers, we 
conducted a regression analysis, using the same dataset118 as in the previous two 
chapters,  with  the  number  of  code  contributions  of  the  two  most  productive  
committers specific  to each module  as  dependent variable119 and the number of 
committers to each module as independent variable. To account for the intraclass 
correlation between observations pertaining to the same model, we used the group 
variable module. Also, integrality index was included in the regression in order to 
control for modularity. Fig. 8.6 depicts the empirical model: 

Fig. 8.6: Empirical model

The test indicated strong model significance (p < 0.001):120 

118See section Sample selection in chapter 3 for a full description of the procedure used to draw the 
sample.

119Years in which modules were developed by fewer than three committers were excluded from the 
regression analysis.  

120To  explore  the  time-structure  of  processes,  we  also  tested  the  model  with  the  predictor  
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Table 8.4: Regression results–Effect of Contributors on Core developers output 
(Condition: if committers > 2)

As before, we see that integrality index has no significant effect on the output of  
each  module's  two  most  prolific  committers.  However,  contrary  to  our 
expectations, the coefficient for committers is positive and significant, indicating 
that an increase of group size at the component-level leads to an increase of core 
developers'  output.  Substituting  the  number  of  code  contributions  of  the  most  
productive ten percent of committers for the code contributions of the two most 
productive committers, yields the same results (p < 0.001):121

Table 8.5: Regression results–Effect of Contributors on Core developers output 

transformed (i.e. lagged a year): the test indicated no model significance (p = ns) and found no 
significant effect of committers_lag (α = 0.05, β = - 0.14, p = 0.86). 

121In experimenting with the model, we also tested it with the predictor transformed (i.e. lagged a 
year):  the  test indicated  no  model  significance  (p  =  ns)  and  found  no  significant  effect  of 
committers_lag (α = 0.05, β =  1.29, p = 0.07).
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         rho    .28389643   (fraction of variance due to u_i)
     sigma_e    62.249584
     sigma_u    39.194804
                                                                              
       _cons     42.50014   14.62092     2.91   0.004     13.84366    71.15662
integralit~x    -1.920364   1.398781    -1.37   0.170    -4.661925    .8211962
  committers     3.282335   .9244487     3.55   0.000     1.470449    5.094221
                                                                              
top_2_comm~s        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0002
Random effects u_i ~ Gaussian                   Wald chi2(2)       =     16.75

       overall = 0.3495                                        max =        14
       between = 0.6725                                        avg =       8.8
R-sq:  within  = 0.0037                         Obs per group: min =         4

Group variable: module                          Number of groups   =        29
Random-effects GLS regression                   Number of obs      =       255

         rho    .32053688   (fraction of variance due to u_i)
     sigma_e     58.05085
     sigma_u    39.871689
                                                                              
       _cons    -6.618627   12.56009    -0.53   0.598    -31.23595     17.9987
integralit~x    -.8727042   1.199744    -0.73   0.467    -3.224159     1.47875
  committers     6.815181   .7714671     8.83   0.000     5.303133    8.327229
                                                                              
top_10perc~t        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000
Random effects u_i ~ Gaussian                   Wald chi2(2)       =     81.95

       overall = 0.4984                                        max =        14
       between = 0.7450                                        avg =       9.3
R-sq:  within  = 0.1182                         Obs per group: min =         5

Group variable: module                          Number of groups   =        29
Random-effects GLS regression                   Number of obs      =       271



Whereas, as in the last test, modularity does not appear to influence the output 
of the most productive ten percent of committers, the coefficient for committers is  
again positive and significant, indicating that an increase of committers results in an 
increase  of  the code contributions  of  the most  productive ten percent of  them, 
reinforcing thus the conclusion drawn from the last test that an increase of group 
size leads to an increase of core developers' performance. 

At first sight, this seems to contradict our previous finding that an increase of 
group size  brings  about  a  fall  in average productivity (Tables  8.2,  8.3).  But this 
contradiction is only a seeming one, for as we have already noted in the analysis of 
descriptive statistics the output of core developers (as reflected in the output of the 
top ten committers per year) is not negatively affected by the increase of group size 
(Fig. 8.4, 8.5). The last two statistical tests (Tables 8.4, 8.5) reinforce this conclusion, 
indicating in fact that at the level of individual modules, core developers' output 
rises when more committers are added to the group. Of course, the positive effect 
that  increasing group size  exerts  on core developers'  output  is  nothing short  of 
remarkable, for it implies that unless core developers' extent of participation in the 
project increases over time, that is, unless core developers devote increasingly more 
time, Brooks' Law does not hold in the project.  

Scale considerations
To verify the robustness of this finding, we attempted to further refine the analysis 
by distinguishing conditions of large-scale development from conditions of small-
scale development. This we did by using the median of committers (i.e. eight) as a 
reflection of the scale of development. By this criterion, large-scale development is 
reflected in years with more than eight committers, while small-scale development 
is reflected in years with fewer than nine committers. Thus, to examine the effect  
of group size on core developers' output in conditions of large-scale development, 
we conducted a regression analysis with the number of code contributions of the 
top two committers for  each module  as  dependent  variable  and the number of 
committers as  independent  variable,  excluding  years  in  which  committers  are  
fewer than nine. As before,  integrality index was included in the regression as a 
control  variable  for  the  effect  of  modularity.  The  test  indicated  strong  model 
significance (p < 0.001):
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Table 8.6: Regression results–Effect of Contributors on Code developers output in 
Large-scale conditions (Condition: if committers > 8)

More  specifically,  the  coefficient  for  committers  is  significant  and  positive, 
suggesting that an increase of committers to a module results in an increase of the 
code contributions of the top two committers. That is, the larger the group that  
develops a module the greater the output of its  core developers.  As regards the 
effect of modularity on core developers' output, it now appears to be significant,  
thus mirroring the results obtained when testing the effect of modularity on core 
developers' output in large-scale conditions of development in chapter 7 (see Tables  
7.6, 7.7). The coefficient for integrality index is negative, indicating that decreasing 
levels of modularity bring about a decrease in core developers' performance. 

Table 8.7: Regression results–Effect of Contributors on Code developers 
output in Large-scale conditions (Condition: if committers > 8)

Testing  the  model  with  the  code  contributions  of  the  top  ten  percent  of  
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         rho            0   (fraction of variance due to u_i)
     sigma_e    85.345932
     sigma_u            0
                                                                              
       _cons     33.44233   32.19719     1.04   0.299      -29.663    96.54766
integralit~x    -15.22334   4.579973    -3.32   0.001    -24.19993    -6.24676
  committers     7.626893   1.447927     5.27   0.000     4.789009    10.46478
                                                                              
top_2_comm~s        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000
Random effects u_i ~ Gaussian                   Wald chi2(2)       =     71.19

       overall = 0.3724                                        max =        14
       between = 0.7603                                        avg =       5.1
R-sq:  within  = 0.0230                         Obs per group: min =         1

Group variable: module                          Number of groups   =        24
Random-effects GLS regression                   Number of obs      =       123

         rho            0   (fraction of variance due to u_i)
     sigma_e    80.448329
     sigma_u            0
                                                                              
       _cons    -21.78503   30.47348    -0.71   0.475    -81.51196     37.9419
integralit~x     -13.6444    4.33478    -3.15   0.002    -22.14041   -5.148385
  committers     10.78388   1.370411     7.87   0.000     8.097921    13.46983
                                                                              
top_10perc~t        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000
Random effects u_i ~ Gaussian                   Wald chi2(2)       =    122.52

       overall = 0.5052                                        max =        14
       between = 0.8052                                        avg =       5.1
R-sq:  within  = 0.0077                         Obs per group: min =         1

Group variable: module                          Number of groups   =        24
Random-effects GLS regression                   Number of obs      =       123



committers instead of the contributions of the top two committers (see Table 8.7 
above), reinforces the results of the last test (p < 0.001). Again, the coefficient for 
committers is significant and positive, suggesting that an increase of committers to a 
module leads to an increase of the code contributions of the top ten percent of 
committers. To recap: both statistical tests indicate that an increase of committers 
to  a  large-scale  development  process  results  in  an  increase  of  core  developers' 
output. 

Having established that increasing group size brings about an increase of core 
developers' output in large-scale development conditions, we proceeded to test this 
relationship  in  conditions  characteristic  of  small-scale  development.  Thus,  we 
repeated the previous two tests  but we now excluded years in which committers  
are  either  fewer  than  three  or  more  than  eight.  To  control  for  the  effect  of 
modularity,  as before,  integrality index was included in the regression. The test 
indicated strong model significance (p < 0.001): 

Table 8.8: Regression results–Effect of Contributors on Code developers output in 
Small-scale conditions (Condition: if 2 < committers < 9 )

We see that the coefficient for committers is significant and positive, suggesting 
that  an  increase  of  committers  to  a  module  results  in  an  increase  of  the 
contributions of the top two committers. Therefore, even in conditions of small-
scale development, an increase of group size causes an increase of core developers' 
output. As regards the effect of modularity, it appears to be insignificant, in line 
with the results obtained in chapter 7 when testing the effect of modularity on core 
developers' output in small-scale development conditions.  

Substituting  the  contributions  of  the  top  ten  percent  of  committers for  the 
contributions of the top two committers, leads to the same conclusion (p < 0.001):
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         rho    .29222442   (fraction of variance due to u_i)
     sigma_e    62.635585
     sigma_u    40.246823
                                                                              
       _cons     35.05923    13.4501     2.61   0.009     8.697514    61.42096
integralit~x    -1.498132    1.29801    -1.15   0.248    -4.042186    1.045921
  committers     3.796786   .8412546     4.51   0.000     2.147958    5.445615
                                                                              
top_2_comm~s        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000
Random effects u_i ~ Gaussian                   Wald chi2(2)       =     23.73

       overall = 0.3591                                        max =        14
       between = 0.6823                                        avg =       9.3
R-sq:  within  = 0.0037                         Obs per group: min =         5

Group variable: module                          Number of groups   =        29
Random-effects GLS regression                   Number of obs      =       271



 Table 8.9: Regression results–Effect of Contributors on Code developers 
output in Small-scale conditions (Condition: if committers < 9)

 Again, the coefficient for committers is significant and positive, indicating that 
an increase of  committers  to a  small-scale  development  process  brings about an 
increase of the code contributions of the top ten percent of committers. 

To summarise our results so far, all statistical tests show that an expansion of 
group  size  results  in  an  increase  of  core  developers'  output,  regardless  of  the 
modules' scale of development. However, that is not to say that the magnitude of 
the effect is also the same. As we have seen in Table 8.6, by examining the effect of 
group size on the output of the top two committers in conditions of large-scale 
development, we found that the coefficient for committers is 7.62. By comparison, 
testing the relationship between these two variables in conditions of small-scale 
development,  as  Table 8.8 shows, yields a coefficient for committers of  3.79. The 
discrepancy  between  the  two  coefficients  suggests  that  the  effect  of  increasing 
group size on core developers' output is much stronger in conditions of large-scale 
development: to be precise, the magnitude of the effect is then greater by 101%. 
This is also attested in the analysis of the effect of increasing group size on the  
output of the top ten percent of committers: the coefficient for committers is 10.78 
in conditions of large-scale development  (Table 8.7) versus  4.26 in conditions of 
small-scale  development  (Table  8.9),  indicating  thus  that  the  magnitude  of  the 
effect of increasing group size on core developers is greater by 153% in conditions 
of large-scale development.

As the effect of increasing group size on the output of the top two committers is  
significantly stronger  in large-scale  development  conditions,  it  suggests  that  the 
productivity of a module's core developers is higher when they are environed by a 
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         rho    .62306061   (fraction of variance due to u_i)
     sigma_e    19.427924
     sigma_u    24.977892
                                                                              
       _cons     .0740592   7.461875     0.01   0.992    -14.55095    14.69907
integralit~x    -.2059359   .4896469    -0.42   0.674    -1.165626    .7537543
  committers      4.26249   .9593469     4.44   0.000     2.382205    6.142776
                                                                              
top_10perc~t        Coef.   Std. Err.      z    P>|z|     [95% Conf. Interval]
                                                                              

corr(u_i, X)       = 0 (assumed)                Prob > chi2        =    0.0000
Random effects u_i ~ Gaussian                   Wald chi2(2)       =     19.85

       overall = 0.1409                                        max =        11
       between = 0.2287                                        avg =       5.3
R-sq:  within  = 0.1154                         Obs per group: min =         1

Group variable: module                          Number of groups   =        28
Random-effects GLS regression                   Number of obs      =       148



group large enough to allow for a finer division of labour within the boundaries of  
the  module.  The  ability  of  core  developers  to  effect  a  division  of  labour  by 
delegating  tasks  and  responsibilities  increases  in  proportion  as  the  scale  of  the 
project  is  enlarged. Given that  tasks can be much more easily  delegated within 
modules  than  across  them,  increasing  the  number  of  developers  working  on  a 
module allows its core developers to delegate more responsibilities to other module 
contributors. In that way, the larger the size of the group developing a module, the 
greater the ability of its core developers to focus on what they do and like best: to 
produce code. In addition to allowing a more extensive delegation of tasks within 
the modules they develop, large development groups have a comparative advantage 
in  characterising  and  fixing  bugs.  This  constitutes  a  feedback  mechanism  that  
provides core developers with a critical user perspective on how to prioritise tasks 
in  the  development  process,  thereby  structuring  their  work  and  shaping  the 
direction  of  development  effort.122 Therefore,  large  development  groups,  by 
enabling an extensive delegation of tasks within the modules they develop and by 
keeping up a constant flow of bug-reports and bug-fixes, free up core developers' 
time for coding, while giving structure to their work content.

To  sum  up,  our  tests  show  that  core  developers'  production  output  is 
significantly greater in large-scale modules, reinforcing thus our previous finding 
that an increase of contributors to a module leads to an increase of the output of the  
module's core developers.

Does modularity negate Brooks' Law?
As  in  chapter  7,  the  empirical  tests  in  chapter  8  show  that  modularity  has  a 
significant effect on productivity in large-scale conditions. We previously qualified 
this finding by arguing that modularity reinforces the tendency of developers to 
specialise  in  conditions  of  increasing  scale  by  facilitating  the  independent 
development of distinct components. As developers can concentrate on some one 
component  without  having  to  coordinate  their  work  with  others  working  on 
different components, their performance is not negatively impacted by increasing 
group size. We can now put these findings into perspective so as to more directly 
engage with Brooks' Law. In large-scale conditions, modularity not only offsets but 

122As one of the project founders explains,  bug-reports are used in FreeBSD as the criterion by 
which  committers  prioritise  tasks  in  the  development  process  (Hubbard  2009).  This  point  is 
emphasised also in Holck and Jørgensen's (2003/4, p. 45) study of FreeBSD.
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actually reverses Brooks' Law so that increasing group size occasions a rise in the 
performance of core developers. What accounts for the positive effect of adding 
more  developers  to  the  development  process  of  a  component  (module)  on  the 
performance of  its  core developers  is  that  large groups enable  a more extensive 
division of labour within the components they develop, which allows their core 
developers to focus on their task of choice, namely new code development. In this 
sense,  modularity  creates  the  conditions  in  which  a  project  undergoing  an 
expansion  of  scale  can  take  advantage  of  the  benefits  of  a  more  extensive 
specialisation and division of labour, without incurring a productivity loss (due to 
the coordination costs attendant upon increasing scale).  

CONCLUDING REMARKS
In testing the hypothesis (H4) we referred to as Brooks' Law, according to which 
increasing group size results in a decrease of productivity, we found that though the 
expansion of the FreeBSD committers group results in a fall in average productivity, 
seemingly confirming Brooks' prognosis, it also results in a rise in core developers'  
output, thereby suggesting that the fall in group productivity is not caused by a fall  
in core  developers'  productivity,  but  by  the disproportionate  increase  of  lower-
contribution committers over time. While these findings provide empirical support 
for the hypothesis that increasing group size results in a fall in average productivity, 
they also falsify some of the premises upon which it rests, since the observed fall in 
average  productivity  does  not  spring  from  a  decrease  of  core  developers' 
performance – whose output rises rather than falls when more committers coalesce 
around the development of a module – but from the disproportionate increase of 
lower-contribution committers over time. In the light of these findings, therefore, 
the hypothesis cannot be wholly accepted, as the causal mechanism underlying the 
decrease  in  average  productivity  is  different  from  that  which  Brooks'  Law 
postulates.

Before we move on to a synthesis of the empirical results (presented in chapters 
6, 7 and 8) in chapter 10, in the next chapter we turn to the historical evolution of 
FreeBSD's governance structure, looking at how the project attempted to manage 
expanding scale. 
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CHAPTER 9: THE EMERGENCE OF 
GOVERNANCE123

INTRODUCTION
As we saw in the literature review in chapter 2, the way Frederick Brooks dealt  
with  the  problem  of  decreasing  returns  to  scale  besetting  the  development  of 
OS/360 at IBM was through a 'fordist' approach (Weber 2004, p. 60).  That is not 
meant to be a denunciation of Brooks' administrative tactics. It is just that the mode 
of organisation that he devised (adopting a proposal by Harlan Mills) follows the 
core principle of fordist production: organising in 'surgical teams' means that the 
software project is split into teams of ten persons, each of which separates the high-
level task of architectural design from the low-level task of code implementation 
and achieves work coordination hierarchically through supervisors, who hold all 
decision making authority. Surgical teams presuppose a clear distinction between 
order-givers and order-takers, between those who design the software and those 
who implement it: a chief programmer assigns tasks to his subordinates, supervises 
their  performance  and  coordinates  their  work.  Although  this  organisational 
configuration,  as  Brooks  himself  recognises,  is  but  an  imperfect  solution to  the 
problems inherent in increased scale, it however succeeds in drastically narrowing 
the  scope  for  potential  interpersonal  communication  interactions  that  lead  to 
decreasing  returns  to  scale  (Brooks  1995,  chapter  3;  see  also  section  The 
productivity paradox in software development in chapter 2).

Such surgical teams are hard to come by in free and open source software (FOSS) 
projects.  The  voluntary  character  of  participation  in  them  as  well  as  the  self-
selection of tasks by participants in accordance with their own desires, implies that 
they must use a different approach to tackle the issue of decreasing returns to scale 
(Weber 2004, p. 62). In FreeBSD specifically, as shown by the empirical analyses in 
chapters 7 and 8, modularity not only offsets but actually reverses Brooks' Law so 
that  increasing  group  size  results  in boosting  core  developers  performance.  We 
qualified this finding by arguing that large groups enable a more extensive division 

123A modified version of this chapter was published in the first issue (Jul. 2012) of the Journal of  
Peer Production under the title Authority in Peer Production: The Emergence of Governance in  
the FreeBSD Project.
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of labour within the modules they develop, by virtue of which core developers can 
focus  on  their  task  of  choice,  namely,  new  code  development.  Although  this 
interpretation throws light on the effect of increasing group size at the component 
level  on core developers performance, it  does not go very far in elucidating the 
effect of expanding scale on the organisational structure of the project as a whole.  
Modularity is  only  part  of  the answer.  As  Steven Weber  (2004,  p.  65)  says,  'if 
Brooks is even partially right....then the success of open source [projects]...depends 
also, and crucially, on how those people are organized'. The question is, how did 
the FreeBSD project manage expanding scale? Even better: what modifications did  
expanding scale cause the organisation of the FreeBSD project?

INFORMAL GOVERNANCE PHASE (1993-2000)
As we have seen  (in chapter 4) FreeBSD evolved for the first seven years (1993-
2000)  without  any  formal  means  of  representing  its  contributors  in  project 
governance.124 During this period, which we refer to as informal governance phase, 
'those who hacked most became part of the “core group” or “core team”' (Lehey 
2002). Jordan Hubbard, one of the three FreeBSD founders, served as the project's 
president until 1997, which position was 'originally created...to give ISVs and other 
corporate contacts a more official-sounding person to talk to'. In 1997 he resigned 
from the position which he also abolished, claiming that it had created 'the illusion 
of a “super core member”... [and] false expectations of authority' (Hubbard 1997). 
The growth of the project was continuous throughout this period. Three concurrent 
and  interrelated  empirical  phenomena  –  the  growth  of  peripheral  contributors 
without  commit  rights  to  the  project  (by  2000,  there  were  an  estimated  1105 
individuals in the periphery of the project [FreeBSD 2000a]), the expansion of the 
(src) committers' group from 16 to 138 persons and the growth of the codebase – 
attest to the project's growth and the dramatic expansion of scale underway. This 
period of growth was however accompanied by a growing criticism of the project's  
governance system. Many committers felt that the composition of the core team no 
longer reflected merit in the project and the core team was censured for abusing its 

124We employ the term  governance to refer to 'the use of institutions, structures of authority and 
even collaboration to allocate  resources and coordinate or  control activity'  (Bell  2002)  in the 
project.  Our  employment  is  akin  to  that  used  in  international  relations,  as  'in  that  context,  
“governance”  is  not  government,  it  is  typically  not  authoritative,  and  in  fact  it  is  not  about 
governing  in  a  traditional  sense  as  much  as  it  is  about  setting  parameters  for  voluntary 
relationships among autonomous parties' (Weber 2004, p. 172).
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authority for its own interest. In 2000 dissent could no longer be channelled into a  
manageable form of mediation with the core team. When a prominent committer 
entered into a confrontation with a core team member, accusing him of trampling 
on his changes, the situation spiralled out of control, threatening to tear the project  
apart. In the discussion that ensued on the project mailing lists, Hubbard outlined a 
number of possible reforms, including the dismantling of the core team, and called 
for a vote. The proposal was well received by the base of committers, who elected 
by vote to adopt an elected core team model. In consequence of this decision, core 
bylaws were drafted, providing thus a regulatory framework for the operation of 
FreeBSD's democracy.125 

The course of FreeBSD's institutional evolution is also reflected in a series of 
documents which the project released with a view to imparting structure to what 
was until then largely an informal development process. The first version of the 
Committer's  Guide  (FreeBSD 1999),  which  laid  down  guidelines  for  regulating 
committers'  mode of  conduct,  was  published in 1999 amidst  a  climate of  rising 
discontent with the project's governance structure. The first version of the FreeBSD 
Developers'  Handbook followed in August 2000 – a month before the first core 
team  election  –  with  information  geared  to  new  committers  about 
circumnavigating FreeBSD's development model. 

In sum, conflicts over the distribution of authority in the project and concerns 
of a perceived illegitimacy in its exercise by the core team led to the adoption of an 
elected core team model in 2000. This institutional restructuring along with the 
bylaws drafted to regulate elections created a democratic basis of legitimacy for the 

125For the core bylaws, see Table 4.1 in chapter 4. Crucially, the core bylaws do not make up what is 
normally understood by the term constitution: they specify the mode of elections and the duration 
of the incumbency, but unlike a constitution they make no reference to the principles on which the 
core team shall be established, the manner in which it shall be organised or the powers it shall  
have, save for establishing the right of committers to recall the core team by triggering an early  
election. Some of those questions are dealt with in other documents released by the project. For  
example, The FreeBSD Committers' Big List of Rules clarifies that the authority of the core team 
is restricted to the task of managing commit privileges: 'In all other aspects of project operation,  
core is a subset of committers and is bound by the same rules. Just because someone is in core this 
does not mean that they have special dispensation to step outside any of the lines painted here; 
core's  “special  powers” only kick in  when it  acts as a  group,  not on an individual  basis.  As  
individuals, the core team members are all committers first and core second' (FreeBSD 2011d).  
On the whole, questions related to the distribution of authority in the project were – and still are – 
the epicentre of conflict: for instance, the reason why decisions are made by consensus does not 
lie in some formal rule forbidding the core team from making decisions autocratically, but in the 
vigorous resistance of committers against core team decisions they regard as conflicting with their 
own will (Lehey 2002).  
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authority of the core team. Closely related with this reform was the parallel attempt 
to more elaborately define the scope of development activities, crystallised in the 
release of the first version of the Committer's Guide in 1999 which elucidated the 
process  through  which  changes  are  integrated  in  the  repository  and  outlined 
committers' behavioural code. 

 
DEMOCRATIC GOVERNANCE PHASE (2000-TO DATE)
The first core team election by vote in September 2000 ushered in the next phase in 
the  institutional  evolution  of  the  project,  that  of  democratic  governance.  The 
transition  from  a  self-selected  group  of  veteran  committers  to  an  elected  one 
reinforced the  already extant  tendency toward the  systematisation of  rules  and 
development procedures. 

Indicative  of  the  ongoing  systematisation  of  rules  and  procedures  is  that 
increasingly  more  instructions  and  development  procedures  are  being  written 
down  as  shown  by  the  continuous  updates  of  the  FreeBSD  Handbook,  the 
Committer's  Guide  and  the  Developers'  Handbook.  More  interesting,  for  the 
purposes of our analysis, is that this process is closely connected with the exigencies 
of conflict management. No example illustrates this better than the SMP conflict in 
2002  between  two  developers  which  led  to  the  formulation  of  a  policy  for 
suspending commit rights. In February 2002 a conflict erupted over changes made 
by a committer to the SMP126 module  without the permission of  John Baldwin, 
SMP's most active then-developer. The core team intervened immediately asking 
him to remove his changes from the repository under the threat of revoking his 
commit privileges. He complied and asked the core team to resolve the issue. The 
core team, after a month of discussion and consultation with committers on project  
mailing lists, decided to delegate authority to  Baldwin to approve or reject changes  
to the SMP code as he saw fit. The core team then used the experience to formulate  
rules  for  suspending  commit  rights,  thereby  creating  a  standard  discipline 
procedure with set offences and penalties.127

Although the SMP conflict in 2002 was particularly difficult to resolve, it was by 
no means the only one. The transition to the elected core team model, though it 
appeased concerns of an illegitimacy in the distribution of authority in the project, 

126The goal of the SMP project was to introduce parallelism into the kernel so that FreeBSD could  
be run on multiprocessor computer hardware architectures.

127For the rules governing suspension of commit rights, see Table 4.2 in chapter 4.
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did not eradicate conflicts. A case in point is the conflict in 2003 between the core 
team and Matt  Dillon, a  prolific  committer,  which led to the revocation of the 
latter's commit rights. According to the explanation given by two members of the 
then-core  team,  Warner  Losh  and  Greg  Lehey,  on  a  popular  online  discussion 
forum for hackers, this decision was dictated by social, rather than technological, 
considerations:  Dillon  had  repeatedly  violated  FreeBSD's  code  of  conduct:  his 
behaviour clashed with the collective way of doing things. One of the two core 
members justified the sanction as follows:

This  action  was  taken  due  to  Matt's  interdeveloper 
relation skills, not due to Matt's technical skills. FreeBSD 
has a code of conduct between developers that the core 
team is charged with enforcing. Without going into the 
details of this mess, at Matt Dillon's prior request, Matt 
violated the code many times over the years. Core tried to 
bring  him into  compliance  with  this  code  of  conduct. 
After  a  recent  incident,  core  felt  that  his  future 
compliance would not be sufficient. His failure to comply 
to that code was causing damage to the project in excess 
of  his  contribution.  Core  felt  it  had  no  choice  but  to 
remove  his  commit  bit  for  the  good  of  the  project 
(Slashdot 2003).

     
A few months later, Dillon announced his decision to fork FreeBSD – that is, to 

make a copy of the codebase and start independent development – thus creating an 
alternative project called DragonFly BSD (Dillon 2003). Dillon, for his part, claimed 
that the reason to launch DragonFly BSD was not his admittedly strained relations 
with  FreeBSD  committers.  Instead,  he  cited  reasons  of  difference  of  opinion 
concerning  the  technical  direction  of  FreeBSD,  emphasising  its  SMP 
implementation (Biancuzzi 2004). The case of Dillon's 'ostracism' illustrates clearly 
two things. First, in a community where technical decisions are intimately related 
to strongly held values and beliefs about effective ways to organise development, it 
is very difficult, and sometimes impossible, to distinguish personal from technical 
conflicts (Mateos-Garcia & Steinmueller 2008; Weber 2004, p. 88). In a sense, both 
dimensions are lurking under a conflict. It is hardly inconceivable that a personal 
antipathy or rivalry may manifest under the guise of a technical disagreement. And 
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conversely, a disagreement on a technical issue, if it is not amenable to immediate 
resolution, is likely to evolve into a personal conflict, given the tendency inherent 
in volunteer organisations' collective decision-making structures to personalise the 
ideas that members of the organisation espouse (Rothschild-Whitt 1979, p. 521). 
But crucially, as Dillon's case demonstrates, the freedom to fork a project (which 
FOSS licenses ensure) mitigates the potential for conflicts. Organisation theorists 
know  full  well  that  easy  access  to  the  exit  option  dampens  the  emergence  of 
conflicts: the potential for conflicts in a group is drastically reduced when members 
can easily walk out, disengaging themselves from it (Hirschman 1970). The practice 
of  forking  is  nothing  but  an  extreme  example  of  the  exit  option:  in  this  way,  
disputes over the direction of technical change in the project that do not admit of 
resolution are effectively 'translated' into alternative development lines (FreeBSD 
core team interview by Loli-Gueru 2003). 

The phase of democratic governance – just as that before it – is marked by rapid 
growth.  The massive expansion of  scale  is  illustrated from the increase  of  (src) 
committers from 138 in 2000 to 209 in 2005.128 Although the expansion of scale 
brought about a significant increase of coordination costs, the increased need of 
active coordination within the group did not lead to  the introduction of  direct  
supervision,  that  is,  to  an internal  hierarchy where  contributions  are  processed 
upstream through 'gatekeepers'.  Rather,  it  prompted changes in the direction of 
increased  standardisation: namely, the standardisation of committers' recruitment 
process  and  of  outputs  through  frequent  building  (Holck  &  Jørgensen  2003/4; 
Jørgensen 2007). 

A standard argument of organisation theory is that work coordination in a small 
group may well be informal, based on the mutual adjustment of group members. 
However, as the group gets larger, it becomes less able to coordinate informally. 
Thus,  control  of  the work passes  into a single  individual and  direct  supervision 
becomes the chief means of coordination (Mintzberg 1993, p. 7; Perrow 1976). Such 
a transformation in the mode of work coordination occurred in Linux when, in 
consequence of the dramatic increase of contributors, Linus Torvalds, the project 
leader,  delegated  authority  to  a  cadre  of  subsystem maintainers  –  his  so-called 
trusted  lieutenants  –  to  filter  the  contributions  of  the  community  of  Linux 
developers. Thus, patches have to be reviewed by the trusted lieutenants, who feed 
the  ones  they  approve  of  back  to  Torvalds  for  inclusion  in  the  official  release  
(Corbet et al. 2010, pp. 15-17; Moody 2001). In the case of FreeBSD, in spite of the  

128By 2010 the total number of committers had increased to 388 (FreeBSD 2010d).
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dramatic  expansion  of  the  base  of  committers,  the  project  made  no  attempt  to 
introduce direct supervision in order to coordinate their work. It did not attempt to 
supervise their work process. Rather, it resorted to standardising their skills.129 That 
was  done  by  standardising  the  process  through  which  outside  contributors  are 
inducted  into  the  project.  Table  9.1 outlines  the  four  stages  that  make  up  the 
recruitment process: 

1. A committer  proposes  to  core  team to  grant  commit  rights  to  an  outside 
contributor.

2. The  core  team approves  the  proposal,  investing  the  new  committer  with 
commit privileges.

3. The mentorship  period  formally begins:  the  new committer  is  assigned  a 
mentor to supervise his work, typically the same committer who proposed 
that  he  be  given  commit  rights.  In  parallel,  the  mentee  has  to  perform 
several tasks intended to familiarise him with the tools used by committers 
and  the  process  by  which  they  integrate  changes  into  the  repository. 
Crucially, for as long as the mentorship goes on, the new committer cannot 
integrate any changes without the approval of his mentor.    

4. The new committer is officially 'released' by his mentor.      

Table 9.1: FreeBSD committers recruitment process 

The process consists of the following stages which are universally applicable to 
new committers:  first,  a  committer  proposes  to  the  core  team to  grant  commit 
rights to an outside contributor, based on the latter's history of contributions.130 As 
Lucas (2002) says, 'by the time you've submitted several dozen PRs, you'll either 
work well with the FreeBSD team or everyone will understand that you and the 
team just can't get along. Direct-commit access is either an obvious next step, or an 
obviously bad move'.  Typically,  the committer who vouches for a new member 
becomes his mentor, assuming responsibility for everything his protégé does in the 
project. The mentor is in a sense his supervisor: he is responsible for reviewing and 
approving his changes prior to being committed to the repository. Concurrently,  
the new committer has to perform a series of tasks intended to familiarise him with 
the tools committers use and the process through which they integrate changes into 

129'Skills are  standardized when the kind  of  training required  to  perform the work  is  specified' 
(Mintzberg 1993, p. 6).

130This part of the process has been formalised since 2002: the FreeBSD website outlines the exact 
steps would-be mentors must follow to propose a new committer (FreeBSD 2011c).
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the repository. The mentorship period has no specific duration and ends when the 
mentor 'releases' officially the new committer. By that time, the new committer is  
supposed  to  have  developed  a  strong  grasp  of  project  goals  and  mastered  the 
requisite technical and interpersonal skills (Lucas 2002). 

The  standardisation of  the  recruitment  process  is  designed to  harmonise  the 
coexistence  of  highly  independent  individuals  within  the  developer  community 
and ensure they can work  smoothly  with each other  by reducing  the scope of 
conflicts  related  to  the  integration  of  changes  (Watson  2006).  To  achieve  this, 
FreeBSD has evolved a training procedure akin to the institution of apprenticeship 
that  builds  into  the  committers-to-be  the  work  programs  and  the  bases  of 
coordination. Thus,  on the job they appear to be acting autonomously, just as a 
surgeon and an anaesthesiologist need hardly communicate when they meet in the 
operating room, knowing through their training exactly what to expect from each 
other. This procedure clearly cultivates a homogeneity of values to facilitate work 
coordination and ensure community cohesion: it uses homogeneity as a mechanism 
for social control.131 Seen from this standpoint,  the recruitment process  for new 
committers constitutes an integral component of the project's governance structure. 
By ensuring that the conduct of new committers is compatible with the collective 
way of doing things and with the goals and values of the project, the recruitment 
process  effectively  reproduces  the  structural  properties  of  the  FreeBSD  social 
system.132    

To  reduce  the  need  for  active  coordination,  FreeBSD  resorted  not  only  to 
standardising the skills of new committers through the recruitment process but also 
outputs  through  frequent  building (Holck  & Jørgensen  2003/4;  Jørgensen  2005, 
2007). Doing a software build refers to the process of converting human-readable 
source code into executable code that can be run on a computer. A successful build 
therefore implies that a working version of the software can be 'built'  from the 
evolving codebase. Aside from the obvious benefit of testing whether the evolving 

131Organisations which 'generally refuse to legitimate the use of centralized authority...to achieve 
social control', commonly resort to such a 'selection for homogeneity', as shown by Rothschild-
Whitt's (1979, pp. 513-4) classic study of five collectivist work organisations in California. This 
homogeneity  is,  of  course,  reinforced  by  the  self-selection characteristic  of  participation  in 
collectivist organisations (Mansbridge 1977, p. 336).  

132The same may be said of the recruitment  process  in  other  large FOSS projects.  Indicatively,  
Mateos-Garcia and Steinmueller's (2008, p. 337) study of Debian demonstrates the role of the 
process by which the project selects and trains new members as a control mechanism due to the 
homogeneity of attitudes it instils into them. In connection with the standardisation of the process 
by which new maintainers are inducted into Debian, see also Garzarelli and Galoppini (2003).  
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product  is  kept  in  a  working  state,  software  companies  do  frequent  builds  to 
facilitate team coordination: 'the key idea is that one large team can work like many 
small  teams if  developers synchronize their work through frequent “builds” and 
periodic “stabilizations” of the product'  (Cusumano & Selby 1997, p. 262). FOSS 
projects are not an exception (Krill 2011). FreeBSD uses three so-called Tinderbox 
servers that automatically build the most recent version of the software every few 
hours.133 The results are posted on the web and on project mailing lists, notifying 
committers of 'tinderbox failures'. Keeping committers informed of 'broken builds' 
is focal to the project's use of mailing lists. As FreeBSD committer David Schultz 
says with regard to the -current mailing list,   

most  people  who  track  -CURRENT  are  subscribed  to 
current@  precisely  because  they  want  to  know  when 
things break (quoted in Andrews 2008).

The feedback provided by broken builds is extremely important: committers see 
the  effect  of  the  most  recent  changes  and  so  can  pinpoint  which  change  is 
responsible for breaking the build. In this sense, the practice of doing daily builds 
makes the development process more visible. It makes it also more predictable by 
allowing committers to follow closely their progress in developing new features. 
Thus,  frequent  building  constitutes  a  code  control  mechanism  that  allows 
committers to stay in sync with the evolving product.

As broken builds result in halting further development until the bug responsible 
for the breakdown is  found and fixed, a key rule for committers  is  to make no 
changes that cause the build to fail. According to the FreeBSD Committers' Big List  
of Rules, to make sure that changes checked in do not break the build, committers 
must test their changes before they commit them: 

If your changes are to the kernel, make sure you can still 
compile [the kernel]...If your changes are anywhere else, 
make sure you can still make world134 (FreeBSD 2011d).  

133The  results  of  the  daily  build  process  are  accessible  online  at  <http://tinderbox.freebsd.org>. 
Indicatively, on 21 June 2011, tinderbox machines performed builds of the -current version and of 
six officially released versions of FreeBSD on nine different hardware platforms.

134'Make world' refers to updating the FreeBSD base system by using a command known by that 
name.
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This rule, as Holck and Jørgensen (2003/2004) correctly remark, by specifying a 
criterion of performance that the work of committers is required to meet, achieves 
the standardisation of the results of their work. Compliance with the rule reduces 
the need for active coordination among committers, as 'with outputs standardized, 
the coordination among tasks is predetermined, as in the book bindery that knows 
that the pages it receives from one place will fit perfectly into the covers it receives  
from another'  (Mintzberg 1993, p.  6).  Similarly,  FreeBSD committers  coordinate 
with each other in terms of certain performance standards. They are expected to 
commit changes that do not break the build; how they do this is their own business.

In   order  to  facilitate  work  coordination and more  effectively  accommodate 
increased scale, the project proceeded to a series of further measures. First, in 2001 
it  started  using  quarterly  status  reports to  alleviate  problems  of  information 
overload caused by increasing group size. As the first of these reports stated, 'the 
FreeBSD developer community has grown, and the rate of both mailing list traffic 
and tree modifications has increased, making it difficult even for the most dedicated 
developer to remain on top of all the work going on in the tree...[The] Status Report 
attempts to address this problem' (FreeBSD 2001b). Thus, quarterly status reports 
have since served to give contributors  an overview of  the various  development 
activities in progress. Second, from 2003 onwards increasingly more development 
activity migrated from CVS to Perforce and later on to the Subversion revision 
control environment because of those environments' superior support for parallel 
development.  By  2006  Perforce  had  replaced  CVS  as  the  development  site  of 
experimental features, while the Subversion server is where development work on 
the src tree is currently taking place (FreeBSD 2011a; Long 2010; Watson 2006).135 
Third,  the  work  of  different  (groups  of)  committers  was  to  a  certain  extent 
decoupled  by  organising  the  development  of  important  new  features  as 
independent  sub-projects  with  their  own  project  manager  (Holck  &  Jørgensen 
2003/4,  p.  46).  In  this  way,  experimental  features  are  developed  in  a  Perforce 

135The  migration  of  development  activity  in  FreeBSD  from  CVS  to  Subversion  and  Perforce 
parallels the migration of Linux from Bitkeeper to Git in 2005 (see Shankland 2005). Both cases 
suggest that the larger a project grows, the more it needs tools that allow developers to work in  
parallel whilst keeping them coordinated. In fact, it is difficult to overemphasise the importance of 
version control systems like CVS and Subversion for distributed software development: FOSS 
developers use the logs recorded in them as activity traces to more effectively coordinate their  
work without  having to  engage in discursive (direct) communication.  In  this respect,  version 
control systems constitute a means of 'stigmergic coordination': a medium through which FOSS 
developers influence the behaviour of each other by leaving traces of their activity in the artefacts  
they produce and use in their work (den Besten et al. 2008; Bolici et al. 2009).  
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revision control environment and merged into the main repository only when they 
are mature enough (Long 2010). Fourth, the project placed a great importance upon 
developer events, encouraging its contributors to attend them. In fact, one of the 
activities for which the FreeBSD Foundation was explicitly set up in 2000 is event 
sponsorship.136      

In  this  period  roles  and  responsibilities  are  increasingly  decoupled  from 
individual committers and delegated to teams. In the informal governance phase, to 
take one example, one person – Satoshi Asami, known as 'Mr Ports' among FreeBSD 
developers  –  was  responsible  for  the  entire  ports  collection.  In  2001,  he  was 
replaced  by  the  Ports  Management  Team.137 Similarly,  the  position  of  Security 
Officer  expanded  into  the  Security  Officer  Team in  2002.138 Whereas  FreeBSD 
machines were administered in the first phase by two or three persons, an admin 
team was formed for this purpose in the latter phase. In the informal governance 
phase, public relations were entrusted to one person – the FreeBSD president – who 
was responsible for interfacing with corporate contacts. Following the abolition of 
the presidential position in 1997, the task was picked up by the marketing team 
and, since its founding in 2000, by the FreeBSD Foundation. Every change we have 
enumerated  so  far  –  from  the  systematisation  of  rules  and  procedures  to  the 
formation of administrative teams charged with tasks formerly carried out by just 
one person – attests that there is a contingent relationship between the governance 
structure and the scale and maturity of a FOSS project (de Laat 2007; O'Mahony & 
Ferraro 2007, p. 1101; Mateos-Garcia & Steinmueller 2008). 

THE IMPERATIVE OF AUTONOMY
Although the adoption of the elective principle altered substantially the mode of 
project governance, it did not affect the mode of work organisation of committers 
in the development process. The process by which changes are integrated in the 

136According to one of the project founders, developer events contribute to relationship-building and 
effective conflict  management:  'meeting face  to  face is  almost  always  a  much better  way of 
building  bridges  since  potentially  sensitive  topics  can  be  discussed  without  someone  going 
ballistic at a mis-parsed phrase or an attempted joke which fell flat, and you'd be amazed at how  
conflicts which have burned for months can be suddenly and easily resolved with one short 30  
minute talk over a cup of coffee' (Hubbard 1998a). Apparently,  developer events help instil a  
sense  of  community,  even  in  a  group  that  relies  predominantly  upon  virtual  channels  of 
communication for its activities. 

137The Ports Management Team currently numbers eight members. 
138The Security Officer Team currently numbers eleven members.
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repository  remained  the  same.  Its  main  feature  –  the  ability  of  committers  to 
integrate changes directly to the repository – did not change. Given the dramatic 
increase of participating committers over time, that is counter-intuitive. How is it 
possible that the expansion of scale did not result in a hierarchical structure where 
changes are processed upstream through a series of gatekeepers? 

What more than anything else explains FreeBSD's structure of organisation of 
daily work with change integration is contributors' autonomy. Over time, the will 
to  autonomy  has  become  institutionalised  in  the  governance  structure  of  the 
development process. Admittedly, as 'FreeBSD development is based on initiative' 
(Saers 2005), FreeBSD developers are highly autonomous. The development of new 
features is not done at the behest of the core team but springs from the individual 
initiative of developers.139 The core team has no authority to tell developers what to 
do.140 Their autonomy of action is  most clearly seen in their ability to integrate 
changes directly into the repository (Jørgensen 2007). This contrasts sharply with 
software engineering models long established in the commercial software industry, 
which  require  that  changes  be  documented  and  cleared  through  a  chain  of 
superordinates prior to being integrated into the repository (Jørgensen 2007, pp. 
119-120; Saers 2005).

What accounts for the autonomy FreeBSD committers enjoy? In the first place, 
developers come to work in FreeBSD because it offers them substantial control over 
their work. In a survey of seventy-two FreeBSD committers, more than 80% of 
them said they were encouraged by the freedom to commit code directly to the 
repository: 'It is frequently easier to make a change to the code base directly than to  
explain the change so someone else can do it'; 'I don't feel I am under the whim of a 
single person' or 'I have submitted fixes to other projects and been ignored. That 
was no fun at all' (Jørgensen 2005, p. 233; see also Jørgensen 2001, 2007).

Bearing in mind FreeBSD's historical background, the significance its developers 
attribute to their autonomy of action is hardly surprising. Though its roots go back 
to  AT&T's  Bell  Telephone  Labs  (BTL),  Unix  was  developed  in  a  consciously 
informal fashion. When AT&T withdrew from the Multics project – a joint attempt 
by BTL, General Electrics and MIT to create a multi-user operating system – some 

139The self-selection of tasks is by no means limited to FreeBSD. As one of the founders of the 
Apache Project remarks, 'the creative energy needed to solve a particular problem, redesign a 
piece of the system, or fix a given bug is almost always contributed by individual volunteers 
working on their own, for their own purposes, and not at the behest of the group' (Fielding 1999, 
p. 42).

140To  quote  former  core  team  member  Lehey  (2002):  'the  FreeBSD  project  is  a  volunteer  
organization, so the core team does not have a mandate to tell anybody to do anything'.
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BTL employees took it upon themselves to create their own without any support 
from  their  employer.  And  so  was  Unix  born.  Its  development  was  from  the 
beginning autonomous from BTL, dispensing with its  leadership and supervision 
altogether.  This,  however,  served to  strengthen the feeling of  mutual  solidarity 
among the growing number of users at american universities, who contributed a 
plethora  of  enhancements,  turning  thus  the  development  of  Unix  into  a  truly 
collaborative enterprise (Pfaffenberger 1996; Raymond 2003; Ritchie  1984; Salus 
1994). With the passage of time, the disdain for bureaucracy evinced in Unix's early 
years of development was imprinted upon the Unix philosophy's emphasis on rapid 
prototyping instead of planning (Gancarz 1995). The subsequent development of 
BSD at  the  Berkeley  campus  of  the  University  of  California  similarly  shunned 
bureaucratic principles of organisation, pioneering a model which revolved around 
a  group  of  programmers  called  committers  on account  of  their  power  to  make 
changes to the codebase:

The  committers  were  a  group  of  people  we trusted  to 
commit  stuff...The notion was  that  you  didn't  have all 
these autocratic  controls...we didn't  need to tell  people 
not to do that; we didn't have to administratively keep 
them from doing things they shouldn't be doing. We had 
set up a culture as well as a structure (McKusick quoted 
in Leonard [2000]). 

In addition to animating the development of Unix and BSD, the principle of 
autonomy is  focal  to  the  model  of  Internet  governance  evolved  by  the  hacker 
community. The prototype of this model is the Internet Engineering Task Force 
(IETF): the closest thing there is to an institution  responsible for the development  
of  Internet  standards.  Formed  in  1986,  IETF  is  an  association  of  volunteers 
organised  into  more  than  a  hundred  working  groups,  which  propose  standards 
through an open publication process.  Formal  membership  is  not  required:  'Any 
individual who participates in an IETF mailing list or attends an IETF meeting can 
be said to be an IETF member...There are no specific criteria for membership other 
than to note that people and not organizations or companies are members of the 
IETF' (Bradner 1999). Its founding belief, as put forth by David Clark, sums up the 
IETF process of developing standards:
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We reject  kings,  presidents  and voting.  We believe  in 
rough consensus and running code (Clark 1992).

Deciding whether to adopt or reject a standard through rough consensus means 
that while unanimity is  not required,  'strongly held objections must  be debated 
until most people are satisfied that these objections are wrong' (Hoffman 2010). In 
practice, though there is no fixed percentage, most proposals that are accepted have 
the support of no less than 90% of the working group (Bradner 1999). Similarly in 
FreeBSD, as FreeBSD committer Joseph Koshy (2010) says, 'formal specifications 
and design documents  are  seldom used...Clear  and well-written code  and well-
written  change  logs  are  used  in  their  place.  FreeBSD development  happens  by 
“rough consensus and running code”'. In an oft-quoted passage, IETF member Brian 
Carpenter (1996) claims that making decisions by rough consensus and running 
code  is  dictated  by  the  evolutionary  and  decentralised  character  of  Internet 
development itself: 'Fortunately, nobody owns the Internet, there is no centralized 
control, and nobody can turn it off. Its evolution depends on rough consensus about 
technical  proposals,  and  on  running  code.  Engineering  feed-back  from  real 
implementations is more important than any architectural principles'. In parallel, 
making decisions in this way is designed to ensure that the actions taken by IETF 
will not contravene some of the most distinctive values of hacker culture, such as  
those  which  emphasise  the  importance  of  individual  autonomy  of  action. 
Autonomy is the overriding ideal of IETF members. As the IETF manual (known as 
Tao) declares:

IETFers  are  fiercely  independent.  It's  safe  to  question 
opinions  and  offer  alternatives,  but  don't  expect  an 
IETFer to follow orders (Hoffman 2010).

It is in fact not uncommon for the autonomy principle to be enshrined into the 
'articles of association' adopted on foundation of a FOSS project. Thus, according to 
the Debian Constitution, 'a person who does not want to do a task which has been 
delegated or assigned to them does not need to do it'  (Debian 1998, 2007). The 
analysis of the historical and cultural context in which the development of FreeBSD 
is embedded brings into sharp focus a broader normative standard with reference to 
which individual hackers act. It shows that the motive of autonomy attributed to 
the conduct of FreeBSD developers  accords with recognised normative patterns. 
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The freedom they have to commit changes directly to the repository makes sense in 
terms of accepted norms, as does their imperviousness to taking orders. 

According to 80% of the FreeBSD committers surveyed by Jørgensen (2001), the 
FreeBSD approach to code integration spurs them to contribute, which of course 
implies that the governance structure of the development process is an important 
motivating factor (Jørgensen 2005, p. 122).141 At the same time, this approach to 
code  integration  is  reckoned  to  benefit  the  project.  Insofar  as  developers  are 
encouraged  by  the  ease  with  which  they  can  add  code  to  the  repository,  the 
freedom  to  commit  changes  directly  allows  the  project  to  'maintain  [its] 
momentum'  (Saers  2005).  Judging  from  the  volume  of  changes  added  to  the 
codebase (see Fig. 7.4 in chapter 7) and the number of active committers over time, 
FreeBSD has without doubt managed to keep up its momentum. This effect on the 
dynamic of development indicates that the manner in which changes are integrated 
is decisive for project outcome.142    

The role of autonomy as an organising norm helps to explain why the dramatic 
increase of committers did not lead to the introduction of direct supervision within 
the committers group, understood as an internal hierarchy of gatekeepers. A maxim 
of  sociology  is  that  the  most  stable  social  structures  are  those  in  which  the 
subjective attitudes of participating individuals are directed toward the belief in a 
legitimate order  (Weber 1947, p. 125). The autonomy principle constitutes such a 
source of legitimacy in the social organisation of FOSS projects (O'Neil 2009, pp.  
37-43). The exercise of authority in FOSS projects – as well as its transmutations 
over  time  –  cannot  be  understood  apart  from  the  influence  of  the  normative 
standard  of  autonomy.  Under  no  circumstances  is  the  conduct  of  bearers  of 
administrative  authority  –  the  core  team in  the  case  of  FreeBSD –  allowed  to 
infringe upon developers' autonomy of action, making thus impossible the adoption 
of  organisational  configurations  which  seem  to  contravene  this  fundamental 
principle.  Consequently,  the  fact  that  the  increase  of  scale  in  numbers  of 
committers  did  not  result  in  the  hierarchisation  of the  committers'  group  is 
accounted  for  by  committers'  motivation  with  reference  to  the  principle  of 
individual  autonomy of  action.  Had  not  been  for  the  primacy  of  autonomy,  it  
remains  open  to  speculation  whether  the  project  would  have  resorted  to  the 
standardisation  of  skills  and  outputs  (through  the  recruitment  process  for  new 

141The FOSS studies by Ghosh  (2005, p. 27), O'Mahony and Ferraro (2007) and Shah (2006, p. 
1008) make the same point. 

142Mateos-Garcia and Steinmueller's (2008, p. 335) study of the Debian project arrives at the same 
conclusion regarding the importance of how contributions are integrated.   
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committers  and  frequent  building  respectively)  rather  than  to  a  hierarchical 
reconfiguration of committer relations. 

AUTHORITY AND LEGITIMACY
All  modes  of  governance  are  based  on some conception  of  authority  (Harrison 
1960).  Authority  in  FreeBSD consists  in  control  of  the  code  repositories:  only 
committers  can  commit  changes  and  only  the  core  team  can  grant  or  revoke 
commit privileges. However, governance mechanisms cannot be coercive, as this 
contravenes  the  autonomy principle  animating  the  work  of  committers. But  if 
FreeBSD's conception of authority is not based on coercion, then what is it based 
on? 

The  answer  is  knowledge.  Contributions  that  reflect  extensive  knowledge of 
programming  technique  and  of  the  goals  of  the  project  are  rewarded  with 
reputation,  which  gives  their  authors  'the  right  to  exercise  authority  over  the 
project and, if not its participants, then at least their contributions' (Mateos-Garcia 
& Steinmueller  2008, p.  336).  The basic  criterion for granting commit rights  to 
outside contributors is their technical prowess, acquired and demonstrated through 
peripheral  participation  in  the  project.  As  core  member  Robert  Watson  (2006) 
notes,  committers  are  recruited  on  the  basis  of  'their  technical  expertise,  their 
history of contribution to the FreeBSD Project, their clear ability to work well in 
the FreeBSD community'.

The authority of the core team has the same basis: it is based on the recognition 
of  its  members'  technical  competence,  acquired  and  demonstrated  through 
participation in the project. In the first seven years of FreeBSD development, 'those 
who hacked most became part of the “core group” or “core team”' (Lehey 2002). 
Although  the  selection  process  of  core  team  members  was  informal,  it  was 
ultimately the amount and quality of code one committed which was supposed to 
serve as the criterion of core team membership. The mode of selection of the core 
team changed considerably in the subsequent period. The application of the elective 
principle imparted a democratic legitimacy to the authority of the core team, as its  
members were now elected by and amongst committers. However, the conception 
of  merit  in  the  project  remained  anchored  in  technical  competence,  proxy-
measured by the amount and quality of code one committed.    

Max Weber's  classic  analysis  of  how authority is  legitimised  provides  a  lens 
through which the historical transformation of FreeBSD's governance structure can 
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be viewed. According to Weber (1947, pp. 124-125), no authority system is stable 
unless  it  is  based on the belief  of  those subject  to  it  in  the legitimacy of  their 
subordination.143 He  distinguishes  between  three  types  of  legitimate  authority  
(Herrschaft). 1. The first type is that of  legal  (or legal-rational) authority. In this 
case, 'obedience is owed to the legally established impersonal order' (Weber 1947, 
p. 328) so that those subject  to legal authority 'owe no personal allegiance to a  
superordinate and follow his commands only within the restricted sphere in which 
his  jurisdiction is  clearly specified'  (Giddens 1988, p.  158).  Persons in authority 
typically occupy a 'position' or 'office'. They are not elected to their position but 
appointed on the basis of their technical qualifications. Their organisation follows 
the principle of hierarchy: 'each lower office is under the control and supervision of 
a higher one' (Weber 1947, p. 331). 2. Traditional authority is based on the sanctity 
of  age-old rules  and powers handed down from the past,  such as  that  which is 
exercised by village elders in small rural communities. 3.  Charismatic authority, 
Weber's third type, is that which is recognised by those subject to it as due to the 
extraordinary abilities of the leader, 'by virtue of which he is...treated as endowed 
with  supernatural,  superhuman,  or  at  least  specifically  exceptional  powers  or 
qualities' (Weber 1947, p. 358). To this type belongs the authority exercised, for 
example, by prophets and religious leaders over their followers or by heroes in war. 
The claim to legitimacy in charismatic authority is founded upon the belief in the  
authenticity of the leader's  mission. The charismatic leader supplies proof of his  
uniqueness through his prodigious feats: the prophet has to perform miracles and 
the war hero triumphant military exploits. But while these are signs of the validity 
of the leader's authority, they are not as such the basis upon which it rests, which 
'lies rather in the conception that it is the duty of those who have been called to a 
charismatic mission to recognize its quality and to act accordingly' (Weber 1947, p. 
359).144 Groups subject to charismatic authority are typically based on an 'emotional 
form of communal relationship' (Weber 1947, p. 360). Their administration is not 
carried out by 'officials' but by the leader's followers or disciples who share in his 
charisma. There is no such thing as career or promotion, no salary, no benefice.  
There is only a 'call', a 'mission' or 'spiritual duty': the leader's administrative staff is 
summoned to the charismatic mission. There is  no hierarchy: the leader merely 
intervenes when he considers the members of his staff inadequate to the tasks they 

143By formulating this sociological maxim, Weber subscribes to the view – as old as political theory  
itself – that rule by force, as opposed to rule by persuasion, is illegitimate. 

144As Weber (1947, pp. 359-360) explains, 'no prophet has ever regarded his quality as dependent on 
the attitudes of the masses toward him'. 
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have been entrusted with. There is no system of formal rules or precedents handed 
down from the past: 'the genuine prophet, like the genuine military leader and 
every  true  leader  in  this  sense,  preaches,  creates,  or  demands  new obligations' 
(Weber 1947, p. 361).

As a general rule, FOSS projects 'are created with few traditions to guide them 
and so do not inherit a traditional basis of authority' (O'Mahony & Ferraro 2007, p. 
1081). They do not rely upon a legal-rational basis of authority either, as there is no 
authoritative division of labour. But when authority cannot be validated through 
tradition or hierarchy, its justification turns often on the charisma of its bearers. 
The leadership of Unix had, without doubt, a charismatic character during its early 
development  at  AT&T.  From  its  inception  in  1969  until  the  mid-70s,  the 
development of Unix is closely connected with the names of Ken Thompson and 
Dennis Ritchie. In recognition of their important role in the making of Unix, they 
both have risen to mythical status in hacker folklore. The FOSS literature has the 
tendency to present them as individuals endowed with extraordinary abilities (e.g.  
Raymond  2000).  The  same  charismatic  qualities  are  also  attributed  to  their 
successor  Bill  Joy,  who  spearheaded  the  subsequent  development  of  Unix  at 
Berkeley from 1977 until 1982. As one of his Berkeley colleagues describes him: 'He 
had an infectious enthusiasm about him, where he would just get the people around 
him to do stuff' (McKusick quoted in Leonard [2000]).  

The  rule  of  charisma  is  however  ephemeral.  Because  of  its  disdain  for  the 
routine  and  the  everyday,  it  is  impossible  for  charisma  to  survive  unless  it 
undergoes  a  profound  modification.  Its  'routinisation'  therefore  implies  the 
devolution of charismatic authority. It is not hard to discern the occurrence of this 
transformation in the course  of  BSD development.  The project  already counted 
more than five years of development by the time Joy stepped down in 1982. In the 
wake of  his  departure,  Sam Leffler  –  Joy's  second-in-command – took over  the 
responsibility  of  completing  the  release  of  4.2BSD.  But  because  'he  was  not 
appointed  to  Joy's  post  and  felt  slighted  by  this'  (Salus  1994),  he  soon  left  for 
Lucasfilm.145 Following the release of 4.2BSD in August 1983, Leffler was replaced 
by  another  member  of  the  team of  programmers  working  on BSD at  Berkeley 
(known since 1980 as the Computer Science Research Group or CSRG for short), 
Mike Karels, who was joined by Kirk McKusick in December 1984. Under their 
leadership, the project evolved an organisational structure with a core team at the 

145Currently, Leffler is a FreeBSD committer and a member of the FreeBSD Foundation's board of 
directors. 
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centre and a wider base of committers surrounding it (Leonard 2000). The type of 
authority relationship that emerges from the routinisation of charisma, according to 
Weber, is determined in large part by how the succession problem is resolved. In 
the case of BSD, the successor was not nominated by the predecessor. Nor was he 
self-selected: in spite of his professed willingness to take on the leader's role, Leffler 
was not appointed to this position by the CSRG and soon stepped down. On the 
contrary, the fitness of his substitute for the position, Mike Karels, as well as that of  
Kirk  McKusick  who  joined  Karels  a  year  later,  was  validated  through  his 
designation by the CSRG. The issue of succession was not raised again in BSD. With 
Karels  and McKusick as  project  coordinators,  a  two-tier  organisational  structure 
began  to  take  shape  in  which  leadership,  rather  than  being  vested  in  a  single 
person, was entrusted to a self-selected group of heavily involved developers. This 
set the stage for an important reinterpretation of the charismatic principle. Instead 
of  being  restricted  to  the  person  of  the  project  leader,  the  'gift  of  grace'  was 
extended  to  a  leading  cadre  of  hardcore  developers.146 FreeBSD  inherited  this 
conception of quasi-charismatic authority from BSD along with its organisational 
template.  

When the FreeBSD project was launched in 1992, the core team included 13 
individuals: the last three coordinators of the 'unofficial 386BSD patchkit' plus its  
most then-active developers. The development of FreeBSD was – and still is – based 
on a group of programmers who are called committers because of their ability to  
make changes to the codebase. Committers organised themselves as an  informal  
meritocracy: the most active committers were invited by the core team to join its  
ranks  and  outside  contributors  who  regularly  sent  useful  patches  were  offered 
commit  rights.  Granting  commit  rights  to  an  outside  contributor  amounted  to 
recognition of the technical expertise that his patches demonstrated. In the same 
way, inviting a committer to join the core team reflected the recognition of his 
outstanding  contribution  to  FreeBSD  and  brilliance  in  coding.  Authority  was 
derived  from  technical  competence,  acquired  and  demonstrated  through 
participation in the project.    

Although the conception of merit in the project did not change (nor was the 
notion  that  legitimate  authority  derives  from  technical  competence  ever 
questioned),  the  criticism  of  the  selection  process  of  the  core  team  and  of  its 
prerogatives became more virulent over time. Its thrust was, on the one hand, that 

146Weber recognised that 'it is possible for any type of authority to be deprived of its monocratic  
character, which bonds it to a single person, by the principle of collegiality' (Weber 1947, p. 392).
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the core team had degenerated into a gerontocracy of veteran FreeBSD developers 
which no longer reflected merit in the project and, on the other, that members of  
the  core  team  abused  their  power  to  serve  their  own  ends.  When  in  2000  a 
prominent committer announced his intention to quit the project because a core 
team member was trampling over his work, the criticism of the core team turned to 
an open conflict that rapidly took on alarming proportions. The intervention of one 
of the project founders at this point was of decisive importance. He suggested a 
number of alternative reforms and called on committers to vote. They responded to 
his call, deciding by vote to adopt an elected core team model. Core bylaws were 
drafted shortly thereafter to regulate elections.

The  transformation  of  charisma  set  off  by  the  application  of  the  elective 
principle to the core team selection was in this case fuelled by the rupture between 
the  group of  committers  and the  core  team.  The conflict  that  manifested  itself 
through  the  growing  criticism  of  the  distribution  of  authority  in  the  project 
brought about a shift  in project  governance toward an electoral  process  for  the 
selection of the core team. As a result, the core team, whose legitimacy rested on its  
members'  charisma,  then  became  the  core  team  thanks  to  the  confidence  of 
committers.  The  introduction  of  elected  core  team members  entailed  a  radical 
alteration  in  their  position:  they  became  the  'servants'  of  those  under  their 
authority. The passage of leadership from a self-selected group to a freely elected 
one signified that from now on committers were free to elevate to power as well as 
depose as they pleased.  Whereas the recognition of the charisma of the core team 
was so far perceived by committers as a consequence of its legitimacy, it now began 
to be considered as its basis. Legitimacy was in this sense democratised.

The  reconfiguration  of  the  governance  system  brought  about  by  the 
transformation of charisma limited the authority of the core team in four important 
ways. First, the sphere of its authority was circumscribed: the role of the core team 
was restricted to managing commit privileges and mediating in the event there is a 
serious disagreement between committers. Second, it exerted control on the core 
team that made it accountable to the community of committers: the core team is 
required to defer to their wishes, making only decisions that reflect the consensus 
of the opinions of committers as manifest on mailing lists. Third, its term of office 
was  specified:  new  elections  would  be  held  every  two  years.  Fourth,  project 
leadership became revocable: the core bylaws invested committers with the power 
to trigger an early election, recalling thus the core team. All these traits correspond 
to the type of governance Weber calls  direct democracy: the short term of office, 
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the liability to recall, the restricted sphere of jurisdiction, the obligation to render 
an accounting to the general community of committers as well as submit to it every 
important question (Weber 1947, pp. 412-3). Direct democracy is characteristic of 
groups which, in order to preserve their members' autonomy, attempt 'to dispense 
with leadership altogether' by reducing 'to a minimum the control of some men 
over  others'  (Weber  1947,  p.  389).  In  that  sense,  direct-democratic  forms  of 
governance  are,  according  to  Weber,  inherently  anti-authoritarian.  The 
routinisation of charisma in groups like FreeBSD which champion their members' 
autonomy is most likely to follow such a line of development.147 

In FreeBSD, more specifically, the anti-authoritarian transformation of charisma 
that culminated in the adoption of a direct-democratic mode of governance limited 
the authority of the core team through the introduction of elements of democratic 
and legal-rational rule. The principles of consensus-oriented decision making, the 
limited duration of office and the liability to recall are all institutional safeguards  
drawing  their  justification from the sovereignty  of  the  will  of  committers.  The 
premises for delimiting the authority of the core team by specifying its sphere of  
jurisdiction are,  on the other  hand,  bureaucratic  par  excellence.  Authority  in a 
bureaucratic organisation is characterised by 'specificity of function'148: authority is 
distributed and legitimised only within the particular sphere of the office. 149 The 
authority  of  the  core  team  is  likewise  restricted  to  a  specific  field:  it  can  be 
exercised only in matters touching commit rights and committer disputes. 'In all 
other aspects of project operation, core is a subset of committers and is bound by 
the  same rules' (FreeBSD 2011d). The use of hats within the project – that is, of 
assigning clearly circumscribed areas  of responsibility to certain committers – is 
also indicative of a stripped-down, embryonic form of bureaucratisation as is the 
tendency toward the formation of teams that take on the role formerly held by a 
single committer (e.g. Ports Management and Security Officer teams). 

147In the Debian project, for example, conflicts between the project leader and the community of  
maintainers over what was perceived as a lack of legitimacy of the leader's authority led to the  
drafting of the Debian Constitution and the development of the new maintainer process through  
which new members are inducted into the project. The former acts as a check upon the authority 
of the project leader while the latter has the purpose of ensuring that new recruits possess not only 
the right skills but also views which are consistent with the socio-political goals of the project  
(Mateos-Garcia & Steinmueller 2008, p. 239; O'Mahony & Ferraro 2007; O'Neil 2009, chapters 7 
and 9). 

148Although Parsons (1939, p. 460) employs the term to describe the scope of professional authority, 
specificity of function is as much characteristic of professional as of bureaucratic authority.  

149A 'specified sphere of competence', as Weber (1947, p. 330) calls it, that involves the obligation to 
perform definite functions is a fundamental category of bureaucratic authority.

195



Weber  (1947,  p.  390)  remarked  that  'the  anti-authoritarian  direction  of  the 
transformation  of  charisma  normally  leads  into  the  path  of  rationality',  as  the 
setting up of an administrative organ that functions reliably invariably involves the 
systematisation  of  rules  and  procedures,  fuelling  thus  the  progressive 
bureaucratisation of the group. Yet the authority of the core team does not belong 
to  the  bureaucratic  type.  If  bureaucracy  is  understood  as  a  'clearly  defined 
hierarchy of offices', as Weber (1947, p. 333) defines it, then core team members 
are not bureaucratic types. Since there are no officers on the core team, core team 
members are not integrated in a hierarchical order: they have no superiors who 
influence their promotion to the core team or supervise their activity (cf. Weber 
1947,  p.  387).150 In  contrast  to  bureaucratic  organisations  which  motivate  their 
members through remunerative incentives, participation in FreeBSD (and in FOSS 
projects  more  generally)  is  voluntary  and  unwaged.  Although  a  good  many 
committers are professionals working in the IT industry,151 their involvement in 
FreeBSD cannot be considered as a career, as conventionally understood. For there 
is  no  career  advancement  in  FreeBSD:  outside  contributors  may  well  become 
committers and committers  core team members,  but that is  hardly analogous to 
moving up in a multi-layered hierarchy of ranks.152 In fact, the aim of FreeBSD's 
governance system is  to  eliminate  the division of  labour that  separates  decision 
making labour  (administrative  tasks)  from executive labour  (performance tasks). 
Not  only is  the core team,  in  addition to  its  managerial  duties,  expected  to  be  
producing code, but more crucially decision making rests on a consensus process in 
which all project members can participate. For decisions to be taken as binding and 

150At the first and only physical meeting of the first elected core team (at the end of BSDCon in  
Monterey in 2000), it was decided that 'there will be no officers on the core team' (Lehey 2002). 

151Indicatively,  in  a  survey  of  72  FreeBSD  committers  (constituting  35%  of  all  committers)  
conducted  in 2000, '43% said an employer had paid for all or part of their time spent on their  
latest code contribution' (Jørgensen 2001). 

152If, following Blau (1970, p. 203), we take differentials of status and managerial rank to be the  
sociological criteria on the basis of which organisational members are differentiated,  then we  
come to the conclusion that FreeBSD consists of two hierarchical levels. The first hierarchical 
level signifies that the contributions of outside contributors are evaluated by committers, who 
alone have the right to integrate changes to the codebase; the same applies to new committers  
whose changes must be approved by their mentor prior to being integrated in the codebase. The 
second level indicates that the right of committers  to integrate  changes is subject to the core 
team's approval. By comparison, Microsoft, taken as an example of software development in a 
proprietary/commercial context, 'has established “ladder levels” for each specialty, represented by 
formal numerical rankings (starting from 9 or 10 for college graduates and going to 13, 14, or 15,  
depending on the area' (Cusumano & Selby 1997, p. 116). The higher echelons of management 
are not even included on this scale (Ibid., p. 119).  
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legitimate, they must carry the consensus of the group behind them. To ensure that 
committers can participate in the process of formulating problems and negotiating 
decisions,  all  issues  are  discussed  on  project  mailing  lists.  Judging  from  how 
decisions are made in the project, FreeBSD is not a bureaucratic but a  collectivist 
organisation.153 The 'consensus rule' applies not only to decisions made by the core 
team but to all decisions in the project, including the integration of changes into 
the codebase. It is indicative that, according to the FreeBSD Committers' Big List of  
Rules (FreeBSD 2011d), no change should be committed to the repository unless 
'something  resembling  consensus  has  been  reached'.  Consensus,  in  this  case,  is 
reached by asking for community review: committers are advised to announce their 
proposed changes on the mailing lists and ask for community review before they 
commit  them.  Although  this  process  does  not  generate  a  large  amount  of 
feedback,154 its significance its clear: as source code modifications, especially non-
trivial  ones,  are  equivalent  to  important  decisions,  it  is  crucial  that  their 
implementation receives the consensual backing of project members. The criterion 
of  consensus  indicates  that  decision  making  is  not  hierarchical  but  collective: 
authority resides in the collective as a whole rather than in the 'superordinate'.  
Such consensus-oriented forms of decision making are obviously incompatible with 
bureaucratic forms of organisation. 

What,  according  to  Weber,  differentiates  bureaucracy  from  other  forms  of 
organisation is  that it  allows for regular control of operations over time. That is 
what, in his view, makes bureaucracy 'rational': through the use of double-entry 
book keeping, bureaucracy makes continuous capital accounting – the evaluation 
and assessment of profit-making opportunities – possible over long periods of time. 
Double-entry book keeping, in a sense, 'stacks' past events and anticipates future 

153In fact, it is not only by virtue of how decisions are made that FreeBSD can be characterised as  
collectivist. The collective character of decision making is mirrored in the project's ownership 
structure. Aside from programmers' time and effort, the most important resource in the project –  
the software produced by its members – is collectively owned by FreeBSD developers. However, 
FreeBSD differs from prototypical collectivist organisations in that, unlike them, only some of the 
instruments used in its development process are owned by the collectivity as a whole. FreeBSD 
owns the IT infrastructure that project contributors use to communicate (public and non-public  
mailing lists, IRC channels), to integrate changes in the codebase (CVS, Perforce, Subversion), to  
test  the  evolving  software  product  (Tinderboxes)  and  monitor  product  defects  (GNATS),  to 
release and distribute software (CVSup) and to publish information (website). But the tools with 
which FreeBSD developers write code are their own private property: their own Internet-enabled 
personal computers.

154In a survey of 72 FreeBSD committers (constituting 35% of all committers) conducted in 2000, 
86% mentioned that they received feedback from two or more reviewers (Jørgensen 2001). 
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ones, thereby providing the basis for organising collective activities on a stable and 
continuous footing. Such control of time is integral to bureaucracy: the central role 
of the 'files' in a bureaucracy lies precisely in enabling a continuous and regular 
operation.  But  control  of  space  is  equally  indispensable  to  the  functioning  of 
bureaucracy:  Weber  is  emphatic  that  administrative  discipline  is  most  effective 
when the vocational life of the officials is strictly separate from their private life.  
The type of demarcation of activities thus effected stretches not only across time 
but  also  across  space:  hence  the locale  of  the office  must  be separate  from the 
domicile  of  the  official.  According  to  Foucault  (1975),  whose  work  deals  more 
extensively  with  the  theme of  time-space  control,  the  distinguishing  feature  of 
bureaucratic organisation – whether in schools, barracks, factories or hospitals – is 
that  the  use  of  an  individual's  time  and  space  is  constantly  monitored  and 
controlled. In such organisations, every individual is assigned its 'proper place' and 
has certain duties to perform at any particular moment. The detailed management 
of individual activities makes it possible to link every movement of the body with 
the performance of a specific task. This type of administrative authority, Foucault  
says, connects discipline directly with utility: its goal is to ensure that the use of an 
individual's time is channelled solely into those activities that the administrators 
consider useful. By contrast, participation in the development of FreeBSD is not 
subject to such forms of control. The project does not keep any record of the time 
individual  committers  spend  on  it.  Committers  participate  in  their  free  time, 
deciding  themselves  when  they  will  work  and  for  how  long.  Moreover,  their 
geographical location is irrelevant: they may work on FreeBSD from the privacy of 
their homes or from any other place. As seen from the standpoint of time-space 
control,  FreeBSD  wholly  dispenses  with  the  'discipline'  characteristic  of 
bureaucratic  administration:  no  attempt  has  ever  been  made  in  the  project  to 
supervise the individual activities of committers or control with any means the use 
of their time or space. 

The divergence of FreeBSD from the bureaucratic model can also be illustrated 
from  the  form  of  social  relationships  in  the  project.  While  social  relations  in 
bureaucratic organisations are based on the formal roles held by their members as 
laid down by an authoritative division of labour, relationships between FreeBSD 
developers are far more holistic, affective and personal.155 For committers, FreeBSD 

155One may wonder how is it possible that developer relations in FreeBSD are personal, given that  
their  interactions  occur  predominantly  in  a  computer  environment.  After  all,  long  distance 
relationships seem rather impoverished, if not shallow, compared to relationships that are based  
on physical co-presence.  It  is  instructive in this connection to refer to the emphasis Marshall  
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is a community; a fraternity of peers, so to speak. While bureaucratic organisation 
separates the 'official' from the 'personal', these two dimensions fuse together in the 
ideal of  community that  FreeBSD aspires  to (O'Neil  2009, p. 175).  In Weberian 
terms, the orientation of social action in FreeBSD is value-rational: that is, social 
conduct is based on definite moral values. The actions of individuals are directed to 
an overriding ideal: being part of the hacker community that coalesces around the 
development of the FreeBSD operating system (cf. Torvalds 1998). That is not to say 
that their actions are not informed by pragmatic considerations, chiefly that they 
want the fruits of their labour to be used by as many people as possible (Hubbard 
1998b).156 But  relationships  between  people  in  FreeBSD  –  as  is  typical  of 
collectively-run volunteer organisations (Rothschild-Whitt 1979, p. 514) – are seen 
as of value in themselves. Arguably, it is not on account of holding some office that  
core team members are recognised as figures of authority. Although their opinion 
may well carry more weight in discussions occurring on project mailing lists than 
that of other committers, this influence is not the result of their 'powers of office'  
but rather of the respect and trust given them by committers for their substantial 
contribution to the project. In collectivist organisations, as Rothschild-Whitt (1979, 
p. 524) remarks, 'because authority resides in the collectivity as a unit, the exercise 
of  influence depends  less  on positional  opportunities  and more on the personal 
attributes of the individual'. Prior studies have shown that collectivist organisations  
find such inequalities of influence 'acceptable in circumstances in which those who 
exercise power exercise it in the interests of others (usually because their interests  
are identical with those of others)' (Mansbridge 1977, p. 326). This interpretation 
fits FreeBSD nicely: committers accept that some of them exert more influence than 
others because that influence is reckoned to be aligned with their own interests. 
Some  traces  of  charismatic  authority  can  still  be  detected  in  this  type  of 
relationship: the trust of committers in core team members is, to a certain extent, of  
an  emotional  type;  and  the  persuasive  authority  of  core  team  members  is 
legitimised through the recognition of the authenticity of their technical charisma 

McLuhan (1964) laid on how the diffusion of electronic telecommunications would transform the 
globe into a 'global village', signalling the return of humanity to a tribalesque form of sociality.  
For McLuhan, the effect of telematic technology on social interaction is profound: as its scope is  
no longer determined by geographical proximity but by affinity, it becomes possible for relations  
of a more remote kind to be experienced as meaningful and personal.  

156Jordan Hubbard (1998b),  one of the project founders,  characteristically underlines the role of 
pragmatic considerations in the development of FreeBSD: 'Our principal objective is to see that 
our software gets used by anyone who can conceivably find a need for it,  and we don't  care 
whether that need is commercial or not'. 
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by committers.
For Weber, the transition from the autocratic selection of the core team to its 

democratic  election  by  vote  would  signal  the  end  of  charismatic  rule,  as  its 
subjection to norms and rules invariably involves the loss of genuine charismatic 
authority. Charisma abhors permanent forms of organisation and formal rules. Its 
claim to legitimacy lies in 'the conception that it is the  duty'  of those subject to 
charismatic authority to recognise its uniqueness and act accordingly (Weber 1947, 
pp. 359-60). This conception of authority is no longer representative of FreeBSD. 
The election of the core team by and amongst committers resulted in changing the 
basis  of  its  legitimacy.  The  recognition  of  charisma  is  no  longer  treated  by 
committers as a consequence of the legitimacy of authority but as the basis upon 
which it  rests.  While legitimacy formerly rested on the 'duty'  of  committers  to 
recognise the technical  charisma of  the core team, it  became democratic  in the 
latter period with the application of the elective principle: the authority of the core 
team was no longer validated by the charisma of its members but by the will of  
committers. Legitimacy was thus 'democratised'. 

The  routinisation  of  charisma  in  FreeBSD  resulted  in  a  direct-democratic 
governance system in which the distribution of authority is validated by the will of 
committers. Although that form of governance includes elements of bureaucratic 
authority, as the authority of the core team is delimited by mechanisms that to 
some  extent  reinforce  bureaucratic  values  (such  as  the  functional  specificity  of  
authority), its source of legitimacy is fundamentally democratic: it is justified by the 
imperative to preserve the sovereignty of the committers' will rather than by its  
adherence to an impersonal hierarchical order. It is important to observe that the 
transformation  of  charismatic  to  democratic  authority  did  not  modify  the 
conception  of  merit  in  the  project,  which  remains  anchored  in  technical 
competence,  acquired  and  demonstrated  through  project  participation.  What 
changed markedly however is the conception of leadership: leadership is no longer 
conceptualised as  the informal  rule  of  a  self-selected group of  heavily  involved 
committers, but as a democratically elected group of committers that is revocable 
and subject to formal rules.        

CONCLUDING REMARKS
We analysed  FreeBSD's  course  of  institutional  evolution  by  distinguishing  two 
phases, based on their corresponding mode of governance. Whereas from 1993 until 
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2000  FreeBSD had  no  formal  means  of  representing  its  contributors  in  project 
governance and leadership consisted in a self-selected group of veteran committers, 
in 2000 the growing criticism of the distribution of authority in the project brought  
about a shift toward an elected model,  according to which project leadership is 
exercised  by  nine  persons  elected  biennially  by  and  amongst  committers. 
Considering the dramatic increase of committers over time, the transformation of 
the  FreeBSD  governance  system  –  as  well  as  the  systematisation  of  rules  and 
procedures that runs parallel to it – suggests that a project's governance structure is  
contingent  upon  its  scale  and  maturity.  The  transformation  of  the  governance 
system, however, did not affect the mode of work organisation of committers in the 
development process, in spite of the remarkable expansion of scale. 

While organisation theory predicts that as a group grows larger it becomes less 
able to organise informally and so is compelled to turn to supervisory hierarchy as a 
means  of  coordination,  the  expansion  of  the  committers  group  was  not 
accompanied  by  changes  in  that  direction.  Rather,  the  project  resorted  to 
standardising  (a)  the  recruitment  process  for  new  committers  and  (b)  outputs 
through frequent building. This line of development cannot be understood apart 
from the influence of the normative standard of individual autonomy of action: it  
can be accounted for  only by bearing into mind that  an important  reason why 
hackers  are  attracted  to  FreeBSD is  the  freedom of  committers  to  add changes 
directly to the repository. The centrality of the autonomy principle elucidates the 
intervening motivational link between the observed activity – the course of action 
FreeBSD took to manage increased scale and achieve work coordination within an 
expanding group – and its meaning to the actors involved. A basic principle of the 
hacker  ethic  is  to  'mistrust  authority  –  promote  decentralization'  (Levy  1984).  
Hackers  espouse the view that  the ultimate  effect  of  centralised  authority is  to 
strangle the creative potential inherent in self-regulating individuals, thus acting as 
a check upon their free development. As the activities of hackers are driven by an 
acute  sense  of  independence,  it  is  not  conceivable  that  they  would  adopt 
organisational configurations which contravene their autonomy.  

The normative significance of individual autonomy explains why authority in 
FOSS projects cannot be coercive. Authority in this environment, as Benkler says 
(2006,  p.  105),  'is  persuasive,  not  legal  or  technical,  and  certainly  not 
determinative'. Naturally, that is not to say that no authority exists. In FreeBSD it 
specifically  consists  in  control  of  the  ability  to  make  changes  to  the  codebase. 
Considering that no authority relationship is stable unless it is recognised by those 

201



who submit to it as based on some legitimate order (Weber 1947), we examined 
how authority is legitimised in FreeBSD, contrasting it with Weber's categories of 
legitimate authority. We found that legitimacy shifted from the quasi-charismatic 
authority of a self-selected group of heavily involved committers to the democratic 
authority of an elected group that is revocable and bound to formal rules. 

However,  none  of  Weber's  categories  captures  sufficiently  the  character  of 
authority in FreeBSD. If, following Weber (1947, p. 152), authority is defined as a  
relationship in which an actor obeys a specific command issued by another, then 
FreeBSD is essentially an organisation without authority. There is no such thing as 
giving or following orders in FreeBSD. The administrative organ of the project – the 
core team – cannot tell committers what to do. When a decision needs to be made, 
it is made collectively by consensus. If, in the Weberian tradition, we take the basis 
of authority as the decisive organisational feature, then the mode of organisation of 
FreeBSD is collectivist, based on direct-democratic procedures of decision making. 
Seen from the perspective of the division of labour in the project,  the mode of 
organisation  of  FreeBSD  is  decentralised  and  anti-hierarchical:  tasks  are  self-
selected  by  committers  as  their  needs  and  interests  best  dictate.  The  resulting 
division of labour is spontaneous in the sense that it emerges from the choices of 
the  committers  rather  than  from a  central  designer.  Committers  work  without 
supervision,  shouldering  themselves  the  ultimate  responsibility  that  the 
modifications they make to the codebase have been adequately tested and do not  
clash  with  the  work  of  other  committers.  Consequently,  FreeBSD illustrates  'a 
production process that doesn't rely on managers' (Hamel 2007, p. 208). In FreeBSD 
those who work also manage. 

The next chapter sums up the empirical results of the research and reflects on 
the role of modular product design as a governance mechanism. 
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CHAPTER 10: CONCLUSIONS

SUMMARY REVIEW OF RESULTS 
The results arrived at by testing hypotheses H1, H2, H2R, H3 and H4 in chapters 5, 
6, 7 and 8 of this dissertation are summarised in the following six tables:

# Subject Independent 
variables

Statistical 
instrument

N  Test results Verdict

H1 Effect of 
modularity on 
coordination

- Descriptive 
statistics

N=Raw 
dataset

No evidence found in 3 
instances

Not 
confirmed

Table 10.1: Summary of statistical test results and findings for H1

# Subject Independent 
variables

Statistical 
instrument

N  Test results 
committers

Verdict

H2 Effect of 
modularity on 

group size

propagation_
cost_lag

integrality_in
dex_lag

Regression 
analysis

N=242 sig = 0.000
p = 0.227

sig = 0.000
p = 0.026

Accepted

Table 10.2: Summary of statistical test results and findings for H2

# Subject Independent 
variables

Statistical 
instrument

N
small-scale/
large-scale

 Test results 
small-scale,

integrality_in
dex

Test results 
large-scale,

integrality_i
ndex

Verdict

H2R Effect of group 
size on 

modularity

committers Regression 
analysis

N=148/123 sig = 0.724
p = 0.725

sig = 0.025
p = 0.025

Accepted

Table 10.3: Summary of statistical test results and findings for H2R
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# Subject Independent 
variables

Statistical 
instrument

N
small-

scale/large-
scale

 Test results 
small-scale,

Δ_KB_per_co
mmitter

/ 
Δ_LOC_per_c

ommitter
/

top_2_commit
ters

/
top_10percent

Test results
 large-scale,

Δ_KB_per_co
mmitter

/
Δ_LOC_per_c

ommitter
/

top_2_commit
ters

/
top_10percent

Verdict

H3 Effect of 
modularity on 
productivity

integrality_in
dex_lag

Regression 
analysis

N=121/121 sig = 0.948
p = 0.948

/
sig = 0.767
p = 0.768

/
sig = 0.074
p = 0.278 

/
sig = 0.540
p = 0.628

sig = 0.042
p = 0.043

/
sig = 0.001
p = 0.002

/
sig = 0.001
p = 0.002

/
sig = 0.009
p = 0.023

Accepted

Table 10.4: Summary of statistical test results and findings for H3

# Subject Independent 
variables

Statistical 
instrument

 Test
results

Δ_KB_per_committer
/ 

Δ_LOC_per_committ
er

Test 
results

top_2_committers
/

top_10percent

Verdict

H4 Effect of group 
size on 

productivity

committers Regression 
analysis

(N=277)
sig = 0.014
p = 0.014

/
(N=277)

sig = 0.000
p = 0.000

(N=257)
sig = 0.000
p = 0.000

/
(N=280)

sig = 0.000
p = 0.000

Accepted with 
qualifications

Table 10.5a: Summary of statistical test results and findings for H4
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# Subject Independent 
variables

Statistical 
instrument

 Test 
results

small-scale,
top_2_committers

/
top_10percent

 Test 
results

large-scale,
top_2_committers

/
top_10percent

Verdict

H4 Effect of group 
size on 

productivity

committers Regression 
analysis

(N=280)
sig = 0.000
p =  0.000

/
(N=157)

sig = 0.000
p = 0.000

(N=123)
sig = 0.000
p = 0.000

/
(N=123)

sig = 0.000
p = 0.000

Accepted 
with 

qualifications

Table 10.5b: Summary of statistical test results and findings for H4

Let us now attempt to synthesise the above findings. 

EFFECT  OF  PRODUCT  STRUCTURE  ON  GROUP  
DYNAMICS

Decentralisation made scalable
As  theorised by  Sanchez  and  Mahoney  (1996),  product  modularity  imparts 
scalability to production systems whose key feature is the radical decentralisation of 
productive  activities.  That  is  presumed  to  be  accomplished  by  decoupling 
production tasks so they can be tackled independently by autonomous development 
groups.  In short,  Sanchez and Mahoney's  theory  holds  that  product  modularity 
makes decentralisation viable on a large scale.  The dimension of  size  is  crucial. 
While  product  modularity  may  not  be  necessary  to  a  small-scale,  though 
decentralised, software project in which participants are in position to grasp and 
keep  track  of  the  interactions  between  distinct  product  components  and  by 
extension among the persons or groups working on them, that is by no means the 
case  for  large-scale,  geographically  distributed  software  projects.  With  the 
enlargement  of  scale  comes  an  emphasis  on  the  design  parameters  meant  to 
encourage  and  underpin  decentralised  production  –  namely,  modular  product 
design. 
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The  findings  of  our  investigation  bear  this  out,  highlighting  the  similarity 
between the design of technological and organisational systems. As we have seen in 
chapter 6 when testing  H2, higher levels  of  modularity at the component level 
result  in  larger  development  groups.  This,  of  course,  implies  that  relationships 
between product components are analogous to relationships between developers, 
providing thus support for Sanchez and Mahoney's (1996, p. 64) contention that 
'products design organizations because the coordination tasks implicit  in specific 
product designs largely determine the feasible organizational designs for developing 
and producing those products'. 

Furthermore, as chapter 6 illustrates, the historical expansion of the FreeBSD 
committers' base is paralleled by increasing levels of modularity at the component-
level.  In  consideration  of  the  (geographically  and  functionally)  distributed 
character of the development process (described in  chapters 4 and 9), the above 
finding gives some empirical flesh to the claim that 'the modular architecture of 
software  design  enables  a  decentralized  production'  by  mitigating  the  need  for 
active coordination between distinct tasks (Osterloh & Rota 2007, p. 159). Although 
decentralisation  may  be  seen  in  some  quarters  as  a  safe-guard  against  the 
arbitrariness of bureaucratic authority (Levy 1984), its more tangible contribution 
to large free and open source software (FOSS) projects lies in the strategic flexibility 
with  which  it  invests  the  production  system,  thereby  enhancing  its  absorptive 
capacity: the project can be scaled up (by taking on more tasks or by adding more 
persons  to  work on a  task,  regardless  of  their  geographical  whereabouts)  while 
retaining  the  flexibility  typical  of  smaller  organisational  configurations.  A 
precondition for the flexibility that decentralisation affords to a production system, 
however, is the decomposability of the product into loosely-coupled components. 
Otherwise, an attempt to enlarge the scale of a decentralised production system 
would  necessitate  considerable  active  coordination,  owing  to  the  difficulty  of 
managing interdependencies between distinct product components. It is precisely 
because it mitigates the need for active coordination between product components 
that modular product design fosters decentralisation. 

In the case of FreeBSD, the phenomenal increase of (src) committers over time 
from 16 to about 200, given (a) their geographical dispersal over the world and (b) 
that  'most  of  the development  work takes place in one-man projects'  (Holck & 
Jørgensen  2003/2004, p.  42;  Jørgensen  2001;  Jørgensen  2005,  pp.  231-232)  as 
developers are working largely by themselves (as noted in  chapter 4), is a strong 
indication that the scope of decentralisation of production has been broadened. The 
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escalation  of  decentralisation  or  what  amounts  to  the  same in  this  setting,  the 
capacity of the project to absorb that many more developers is due, in large part, to 
the increase in modularity at the component-level. Without the ancillary role of 
modular product design, the expansion of the base of committers would be attended 
by such increased coordination costs that the product development process would 
become  bogged  down.  That  helps  explain  the  importance  the  project  lays on 
periodical  architectural  re-designs:  every  new  development  branch  of  FreeBSD 
involves  an  extensive  architectural  clean-up  intended  to  remove  inter-
dependencies (FreeBSD committer Wes Peters interviewed by Loli-Gueru 2003). 
From this  standpoint,  to  borrow Sanchez  and  Mahoney's  formulation,  modular 
product design is  a  device by which to enhance a production system's  strategic 
flexibility and absorptive capacity.   
  

Modularity reinforces the emergent division of labour
By  dissecting  in  chapter  7 the  results  of  the  regression  of  core  developers'157 
production output158 on our independent  variables  (see  Tables  7.6,  7.6,  7.8), we 
ascertained that an increase of modularity at the component-level occasions a rise 
in the output of (that component's) core developers,  provided that conditions of  
large-scale development prevail.159 In order to more fully comprehend the relation 
of product structure to core developers' performance, it  is  necessary to take one 
more factor into account: the learning costs involved in making oneself familiar 
with the codebase and keeping track of the interactions therein. As these learning 
costs are determined by the size of the codebase, it is not hard to see that as the  
scale of the project expands – that is, as more developers join the committers' group 
and  the  codebase  consequently  grows  bigger  –  it  becomes  increasingly  more 
burdensome for any one of them to grasp the sum total of interactions between the 

157We use the characterisation core developers to refer to high-contribution committers, though the 
FreeBSD project does not use this term on the grounds that it can mislead one to conflate prolific  
committers  with  core  team  members  (see  FreeBSD  committer  Greg  Lehey's  comments  in 
Slashdot 2003).     

158At the level of individual modules, core developers' production output is proxy-measured by the  
number of code contributions made by the top two committers in each module, and alternatively 
by the code contributions of the top ten percent of committers in each module.  

159We used the median of committers (eight) to distinguish between conditions of large-scale and 
small-scale  development  at  the  component-level.  Thus,  a  small-scale  development  process  is 
reflected in years that fewer than nine committers participate in the development of a module (i.e.  
committers < 9), while large-scale development is reflected in years in which more than eight  
committers are active (i.e. committers > 8).
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components comprising the codebase. The only way then that committers can stay 
on top of development work is by specialising in that part of the codebase with 
which  they  are  most  familiar.  Thus,  a  spontaneous  division  of  labour  emerges 
among  them  out  of  their  own  decision  to  narrow  down  the  focus  of  their  
contributions.  This  tendency  toward  specialisation is  reinforced  by  modular 
product design: enlarging the scale of the project militates in favour of committers'  
specialisation,  to  which  modular  product  design  conduces  by  enabling  the 
independent  development  of  distinct  product  components.  Because  of  that, 
individual committers need not bother about activities centred on any segment of 
the codebase other than that which forms the focal point of their work. The reason 
therefore  why  an  increase  in  modularity  at  the  component-level  results  in  an 
increase of core developers' output is because it induces the 'separation of concerns' 
(Parnas 1972) among committers, reflecting and reinforcing at the same time their 
own decision to specialise  in some one area  of  the codebase.  As  such,  modular 
product design is the logical equivalent to the division of labour characteristic of 
decentralised, large-scale projects: it is the technical expression of the division of 
labour  in  the  context  of  decentralised  production  processes  as  well  as  the 
mechanism through which that division of labour is effected. 

Effect of product modularity on labour productivity
In  the  previous  section  we  examined  the  positive  effect  that  an  increase  of 
modularity at the component-level exerts on the output of core developers when 
large-scale development conditions prevail. We qualified this result on the basis of 
the finer division of labour in the project to which modularity conduces, arguing 
that  modularity  reinforces  the  tendency  of  core  developers  to  specialise  in 
conditions  of  increasing  scale.  But what  about  the  effect  of  modularity  on  the 
performance of the committers' group as a whole? The statistical tests we performed 
focusing on small-scale development conditions (Table 7.4) showed no significant 
effect. On the contrary, by dissecting the results of the tests centred on large-scale 
development conditions (Tables 7.2, 7.3), we found that an increase of modularity 
causes an increase in average group performance, providing thus empirical support 
for proposition  H3, which holds that  modularity has a positive effect on labour 
productivity in projects  such as  FreeBSD which are  characterised by  increasing 
scale. 

This  result  (viz.  the  positive  effect  of  modularity  on  group  performance)  is 
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explained  by  modularity  theory  as  follows:  a  modular  product  design  allows 
developers  of software projects,  which are  undergoing an expansion of scale,  to 
focus on some one component of the product without having to coordinate their 
work with  that  of  others  working  on different  components  –  that  is,  it  allows 
developers  to work independently of each other.  Consequently,  their  individual 
performance  remains  as  high  as  if  they  actually  worked  by  themselves.  The 
statistical  analysis  (presented  in chapter  7)  verifies  the  claimed  benefit  of 
modularity, showing that – in large-scale conditions of development – higher levels 
of  modularity at  the component-level  bring about  an increase  in average group 
performance. The reason why the statistical analysis, on the other hand, finds no 
significant effect of modularity on group performance in small-scale development 
conditions appears to lie in the increased development costs attendant upon the 
modularisation  process,  which  erode  the  claimed  productivity  benefits  of 
modularity (Capra et al. 2008, p.765; Garud & Kumaraswamy 1995, p. 97; Garzarelli  
& Galoppini 2003). Viewed this way, that higher levels of modularity do not result 
in an increase in average group performance in small-scale development conditions, 
as opposed to large-scale ones, implies that in order for the benefits of modularity to 
exceed its costs, the scale of development has to be so enlarged that the need to 
mitigate the adverse effects of increasing scale takes on a pressing character – for it  
is only then that the potential of modularity can be fully exploited.  

EFFECT  OF  GROUP  DYNAMICS  ON  PRODUCT  
STRUCTURE

Product structure mirrors organisational structure
The notion that the architectural structure of a product mirrors the structure of the 
social organisation that produced it is not new. As early as 1968, Conway argued 
that  the social  relations of production of software artefacts  crystallise into their 
architectural  structure,  which phenomenon is  also  attested in the results  of  the 
statistical tests conducted in chapter 6. Our findings bear this out in part, indicating 
that – to the extent that large-scale development conditions prevail – an increase in 
the number of participants in a distributed software development process leads to 
higher levels of code modularity. 

As qualified in prior empirical work, this effect is the corollary of the very mode 
of production exemplified by large FOSS projects (Capra et al. 2008; MacCormack 
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et al. 2006; Merlo et al. 2009; Weber 2004). Because FOSS projects are: (a) devoid of 
the  pressure  of  deadlines  characteristic  of  commercial  software  development 
settings and (b) paradigmatic of software production as a public process founded on 
the openness of source code, it follows that FOSS developers are incentivised to 
produce software of  higher  design quality (which,  as  structure is  considered an 
aspect of design quality, is therefore more modular) than their counterparts in the 
commercial software industry. From this vantage point, removing the pressure of 
deadlines from the product development process and exposing one's code to the 
scrutinising gaze of a multitude of programmers creates a powerful inducement to 
develop modular code (Capra et al. 2008, p. 778). 

Furthermore,  as  large  FOSS  projects  are (c) typified  by  a  large  and 
geographically distributed base of developers, in consequence of which the scope 
for  face-to-face  communications  is  drastically  narrowed,  it  follows  that  fewer 
communication paths between developers – and by implication, fewer connections 
between  components  (modules)  –  are  established.  Owing  to  the  inherent 
limitations on communication, therefore, the product architecture that evolves is 
more modular (MacCormack et al. 2006, p. 1027; MacCormack et al. 2008, pp. 20-
21). That the logical equivalent to the decentralisation of production processes is 
the architectural modularity of the resulting product is also attested in the pattern 
of industrial growth that the microcomputer industry (better known today as the 
personal  computer  industry)  has  come  to  epitomise.  As  chronicled  by  Langlois 
(1992) among others, a decisive role in edging personal computers onto a modular 
path was played by the hobbyist community that bootstrapped the industry in its 
early days. As established firms of the likes of IBM initially failed to appreciate the 
market potential for small computers for individual end-users, the early stages in 
the history of the PC industry are largely the story of enterprising hobbyists who 
fed on the capabilities of a large network of external sources to develop their own 
computers  (Anderson 1984;  Gray  1984;  Hauben 1991;  Stern  1981).  Lacking  the 
technical capabilities for producing in-house all the components they needed to 
build a personal computer, hobbyists banded together in user-groups  (such as the 
legendary Homebrew Computer Club out of which emerged the distinctive culture 
of high-tech entrepreneurship that Silicon Valley is acclaimed for) and resorted to 
specialising in some components while outsourcing the rest. Had these hobbyists – 
and the start-ups they founded – not drawn upon a globally distributed network of 
capabilities,  it  would  have  been  impossible  to  give  flesh  to  their  vision  of 
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'computers for the masses'.160 As Langlois says, 'the rapid growth and development 
of the microcomputer industry is largely a story of external economies. It is a story 
of the development of capabilities within the context of a decentralized market 
rather than within large vertically integrated firms' (Langlois 1992, p. 38, emphasis 
ours; see also Langlois & Robertson 1992, p. 311). The architecture that evolved for 
personal  computers  was  therefore  modular  not  because  of  any  inherent 
technological necessity, but because the personal computer was a systemic product 
made up of  components  that  were developed independently of  one another  by 
different firms, with little, if any, active coordination between them (Langlois 1992, 
p. 39).   

The above analysis furnishes ample information in order to qualify the results of 
the  statistical  tests  pertaining  to  conditions  of  small-scale  development.  If  an 
increase of group size up to eight committers prompts no changes in the product 
structure in the direction of increased modularity, that is because of the extent they 
coordinate their work with each other; because the pattern of work in the group – 
when participation is limited to fewer than nine persons – is essentially that of a  
close-knit  group.  The  product  structure  that  evolves  is  non-modular,  therefore, 
because it reflects the work patterns of a tightly-coupled group of developers.    

Product structure as coordination mechanism
Considering  that  FOSS  projects  are  (d)  destitute  of  recourse  to  an  authority 
structure  by  which  to  effect  coordination,  it  appears  that  product  structure 
constitutes an essential coordination mechanism in this setting (Merlo et al. 2009, p. 
35). In contradistinction to commercial software development environments where 
coordination is effected through the organisational hierarchy, as decisions made 'at  
the  higher  hierarchical  levels  are  addressed  and structured through the  middle 
levels and implemented by the low-level development teams', FOSS projects have

no  explicit  and  formal  organizational  structure...the 
network is highly dynamic and team members are likely 
to change, even within the core. As a consequence, the 

160The Apple II (1982) illustrates this well: its stuffed boards were developed by GTC; its floppy-
drives  from Shugart  and Alps;  its  hard-drives  from Seagate;  its  RAM and ROM chips  from 
Mostek, Synertek and NEC; its monitor from Sanyo. The only components that Apple developed 
in-house were floppy and hard-drive controllers, the power-supply and the case. See Langlois 
(1992, pp. 14-15, footnote 44). 
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only  coordination  mechanism  that  can  be  effectively 
exploited is the software product [structure] itself, which 
becomes the only way to share design decisions over time 
and  coordinate  tasks  among  the  community  members 
(Merlo et al. 2009, p. 16). 

It is a well known principle of organisation theory that 'organizations, through 
the authority mechanism, provide a means for coordinating the activities of groups 
of  individuals'  (Simon  1991,  p.  38).  By  contrast,  the  predominantly  voluntary 
character of participation in FOSS projects dispossesses project  managers (who, in 
the context of FOSS projects, are better known through a variety of names such as 
project  leaders  [like  Linus  Torvalds  in  Linux  or  Stefano  Zacchiroli  in  Debian], 
administrators  [in  Sourceforge-hosted  projects],  module  owners  [in  Mozilla], 
subsystem maintainers  aka  'trusted  lieutenants'  [in  Linux]  or  the  core  team [in 
Apache and FreeBSD]) of  the means by which to command-and-control. At the 
same time, FOSS developers are keenly aware that their informal and voluntary 
division of labour is incomplete, if not fragile. The coordination issues raised by this 
problem  are  at  the  forefront  of  their  discussions  and  product  architecture  is 
designed accordingly (Weber 2004, p. 175). That is to say, FOSS projects have no 
alternative but to use the product structure as a coordination mechanism. Linus 
Torvalds' experience with version 2.0 of Linux (which was released in 1996) drove 
home  this  lesson  (Torvalds  1999),  which  has  since  become  part  of  community 
practice. It is for that reason that software structure is arguably perceived by FOSS 
developers as a variable that FOSS projects can and must manipulate in order to 
induce a definite division of labour by reducing the need for active coordination 
between the product's constituent elements. Admittedly, FOSS developers leverage 
design structure to induce what David Parnas (1972) calls a definite 'assignment of 
responsibility':  in  this  sense,  product  architecture  can  be  said  to  drive  the 
organisation of FOSS projects (Weber 2004, pp. 174-175).  

The above conclusion, however, by emphasising the impact that modifications 
of the product structure exert on the development organisation, may be seen as 
contradicting the foregoing analysis, according to which product structure evolves 
to reflect the production environment embedding it. If product structure can be 
moulded so as to shape group dynamics, this implies that the modularisation process 
cannot  be  conceived  apart  from  the  political  will  that  enacts  it.  From  this 
viewpoint,  changing  the  product  structure  constitutes  an  active  managerial 
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intervention. To use an expression of Henry Mintzberg, it is an action taken on the 
basis of 'deliberate strategic intent': as such, product modularity cannot be said to 
arise  out  of  the  actions  of  individual  developers  pursuing  their  own  interests  
independently of what others are doing on the project, but is imposed from the top. 
Yet this contradiction is but a seeming one: for as we have seen, in the context of 
FreeBSD development, modularity is a design parameter meant to reinforce core 
developers' decision to specialise in some one area of the codebase, which decision 
is a strategy they deliberately employ to cope with the increased learning costs that  
a  growing  codebase  implies.  The  initiative  enacting  the modularisation process, 
therefore, seldom emanates from a lead architect or a command centre cut off from 
the  actual  site  of  development  activity.  Rather,  the  growth  in  the  size  of  the 
codebase impels the realisation that core developers, should they want to stay on 
top of  development  work,  have to  concentrate  on that  part  of  the codebase  in 
which they are  most  experienced.  And,  of  course,  with this  decision comes  an 
emphasis  on  the  design  parameters  aimed  at  encouraging  and  facilitating  core 
developers' specialisation – namely, modular product design.       

Why not in small-scale development conditions?
Contrary to the tests  centred on large-scale development conditions,  the results 
obtained by testing the effect of group size on product structure in conditions of 
small-scale  development  (see  Table  6.12)  suggest  that  increasing the  number of 
developers  who  work  on  a  software  project  –  as  long  as  the  overall  group  of 
developers remains essentially small (viz. does not exceed eight developers) – exerts 
no significant effect on product structure. The reason why the enlargement of the 
group left no mark on the product structure is because the increase in the number  
of developers was such that no extensive modification of communication patterns 
was rendered necessary. To the extent that the increase of developers working on 
the  project  is  moderate,  it  does  not  interfere  with  individual  developers'  work 
process: hence, insofar as no modification of the existing communication system is 
required, an increase in the number of developers is rather unlikely to prompt any 
changes  in  the  product  structure  in  the  direction  of  increased  modularity. 
Modifications in the product design structure aimed at higher levels of modularity 
are  called  forth  when  the  increase  in  group  size  is  large  enough  for  existing 
channels  of  communication to  accommodate without at  the same time clashing 
with work patterns. In order for an increase of developers to be imprinted onto the 
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software artefact,  therefore,  the group must be so enlarged that it  necessitates a 
radical modification of communication patterns, and by extension, work patterns – 
which exigency modular redesign meets. 

EFFECT OF GROUP SIZE ON LABOUR PRODUCTIVITY
Brooks' Law revisited
The hypothesis  known as  Brooks'  Law holds  that  adding  more  developers  to  a 
software project brings about a fall in group productivity because of the increased 
communication  and  coordination  costs  attendant  upon  group  expansion.  Our 
analysis of descriptive statistics provides ample support for this proposition, for as 
we have seen in chapter 8 the historical growth of the committers' base is paralleled 
by a tendential fall in average labour productivity (measured in both LOC added 
per committer and KB added per committer). At first glance, observing that average 
productivity  drops  concurrently  with  the  rise  in  the  number  of  participating 
committers is suggestive of the negative effect of group expansion on productivity 
that Brooks' Law predicts. 

Yet  this  conjecture  may  be  somewhat  premature  in  light  of  the  effect  that 
increasing group size exerts on the output of core developers. By contrasting the 
code contributions of core developers (as reflected in the code contributions of the  
top  fifteen  committers  for  every  year  of  development  activity)  with  the  total 
volume of  code  contributions  to  the project  over  time,  we ascertained that  the 
output  of  core  developers  is  not  negatively  affected  by  the  expansion  of  the 
committers'  group.  From  this  premise  it  follows  that  the  drop  in  average  
productivity  is  due  to  the  disproportionate  increase  in  'low-contribution'  
committers over  time.  This  of  course  implies  that  either  core  developers'  work 
process, in spite of the expansion of the committers' base, is not subject to increased 
coordination costs or they invest increasingly more time in the project so that the 
time they channel  in communicating and coordinating their  activities  with one 
another does not eat away at the time they put in producing code. By showing that 
the amount of time which their majority (55.5%) spends on the project is steadily 
increasing, the results of our survey of core developers (discussed in chapter 8) lend 
support to the latter hypothesis, suggesting that their high performance is not due 
to the absence of coordination costs but to the temporally increased scope of their 
participation.  

The statistical tests discussed in chapter 8 reinforce the syllogism that the drop 
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in  average  productivity  is  caused  by  the  disproportionate  increase  of  low-
contribution committers over time. They show that an increase in group size at the  
component-level (i.e. at the level of individual modules) occasions a rise in core 
developers' output. All the more so, they furnish proof that this effect is augmented 
in large-scale development conditions so that the larger the group that develops a 
component (module) the larger the output of that component's  core developers. 
This result, though counter-intuitive at first sight, is nonetheless not unaccounted 
for.  On  the  one  hand,  increasing  the  number  of  persons  engaged  in  the 
development of a module allows its core developers to introduce a finer division of  
labour within the boundaries of the module. The larger the group that develops a  
module the greater the room for task delegation within it. Thus, the ability of a 
module's core developers to delegate tasks and responsibilities (on a voluntary basis 
of course) increases in proportion with the number of committers attached to the 
module, thereby freeing up time for core developers to more fully concentrate on 
churning  out  code.  Moreover,  large  development  groups  excel  in  generating 
problem-reports  and  fixes.  This  gives  structure  to  the  work  content  of  core 
developers, as it is on the basis of that feedback that they prioritise tasks in the 
development process. Hence, if increasing the number of committers working on a 
module results in boosting the productivity of its core developers, that is because 
large groups enable a more extensive division of labour within the modules they 
develop,  by  virtue  of  which  core  developers  can focus  on their  task  of  choice, 
namely, new code development. 

It  is  important  to  note,  however,  that  these  results  do  not  falsify  the  basic 
premise  of  the  Brooks'  Law  hypothesis:  there  is  no  doubt  that  interpersonal 
communication paths or interactions, which can lead to decreasing returns to scale,  
grow exponentially as more developers join the development process of a module. 
It is therefore unavoidable that the need for active coordination becomes the more 
pressing  as  more  individuals  are  added  to  the  development  group.  Hence,  the 
increased productivity of core developers in modules with large groups is  by no 
means accounted for by a mitigation of coordination costs within the boundaries of 
the module. Quite the contrary, the increased performance of core developers in 
modules jointly developed by large groups needs to be explained on the basis of 
increased  coordination  costs.  It  begs  the  question,  how is  it  possible  that  core  
developers  produce  more in the face of increased coordination costs  within the 
boundaries of the module? Apparently, the cognitive difficulties represented by the 
increased  coordination  costs  are  not  beyond  the  ability  of  those  modules'  core 
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developers to handle. Keeping up a high level of individual performance requires 
that  they  understand  and  keep  track  of  interactions  between  tasks  within  the 
module. Of course, the ability of humans to process information is limited, and so is 
the ability of core developers to manage an ever-growing number of interactions. 
That  is  to  say,  the limit  to  core  developers'  productivity  is  the number of  task 
interactions they can manage. Insofar as the group that develops a module does not 
grow large enough for interactions to spiral out of core developers' control, they 
may  well  sustain  a  high  performance.  Conversely,  an  increase  of  interactions 
beyond core  developers'  capacity  of  apprehension would  most  certainly  disrupt 
their work process, lowering their productivity. In the case of FreeBSD, we have 
not been able to trace such a threshold. Without exception, the statistical tests we  
performed reveal that the larger the group that develops a module the greater the 
output of its  core developers. Yet, that we found no evidence to the effect that  
increasing group size drags core developers' productivity down should not be taken 
as  proof  that  such a  threshold does not  exist  in potentia.  What we know with 
certitude is that the threshold has not so far been reached: at the level of individual 
modules an increase of group size up to forty-five committers – which no FreeBSD 
module exceeds on any one year of their development161 – is demonstrably shown 
to raise core developers' output. However, should the increase of group size at the  
component-level be greater, it remains an open question whether core developers 
could sustain their high performance.  Crucially,  this  eventuality is  tempered by 
modules' development dynamic over time: for as our statistical tests in  chapter 6 
indicate, the size of each module's development group is inversely proportional to 
the  module's  production-readiness  (i.e.  maturity).  Put  simply,  the  need  for 
manpower declines in proportion as modules approach maturity. Modules attract 
more  contributors  in  their  early  development  stages  because  at  that  point  the 
number  of  production  tasks  to  be  worked  on  is  much  greater  –  hence,  more 
developers  are needed.  Conversely,  the closer  a  module  approaches  production-
readiness the fewer the production tasks pending completion – hence, the fewer the 
developers  that  are  needed.  This  implies  that  modules  evolve  through  the 
successive stages of growth and stagnation, which effectively regulate the relative 
size of a module's development group. By ensuring that development groups grow 

161It is worth noting that in other FOSS projects some of the modules attract significantly larger  
development groups. Take Linux for example: in version 2.5.25 of Linux, 3.55% of all modules 
were developed by groups numbering 51 to 100 developers, while 4.74% of modules had groups 
working on them that exceeded 100 developers (Ghosh & David 2003). Similarly, modules with  
more than a hundred developers are quite common in Mozilla (Mockus et al. 2002, p. 334).     
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as large as modules' technical production requirements allow for, as well as that 
they grow smaller in proportion as these requirements are fulfilled, this pattern of  
component evolution suggests that modular product design functions (within the 
boundaries  of  the  modules)  as  a  mechanism,  which  modulates  the  number  of 
developers that can be assigned to work on a module according to its development  
stage.  

It  is  worth repeating that  the positive effect  of increasing group size  on the 
output of core developers is not accounted for by a mitigation of coordination costs 
within the boundaries of the module. The results of our component-level analysis 
do  not  falsify  the  core  premise  of  the  Brooks'  Law  hypothesis:  interpersonal 
communication paths within the boundaries  of a module grow exponentially as 
more  committers  join  the  module's  development  group.  It  follows  that  what 
moderates the potential for decreasing returns to scale at the component-level is 
not a mitigation of coordination costs within the boundaries of modules, but the 
more extensive division of labour that larger development groups make possible. 
That is to say, the increased output of core developers is explained by the fact that  
larger development groups enable a finer division of labour within the module they 
develop, thanks to which core developers can delegate more tasks to other module-
developers,  thus  being  able  to  more  fully  preoccupy  themselves  with  the 
development  of  new code.  However,  it  is  not  only  the finer  division of  labour 
within  the  boundaries  of  modules  that  prevents  the  negative  consequences  of 
increasing group size from asserting themselves. A strong moderating effect on the 
potential  for decreasing returns to scale is  exerted by the motivational forces at 
work.         

As  the  discussion  in  chapter  1 clarifies,  besides  the  exponential  growth  of 
interpersonal communication paths, which results from adding more persons to the 
development group (e.g. Boehm 1981; Brooks 1995), decreasing returns to scale are 
often the result of reduced individual motivation: group performance falls because 
people tend to expend less effort when working as part of a group (e.g. Ingham et 
al. 1974; Latané et al. 1979). That is not however an unavoidable consequence of 
collective  work.  The  tendency  for  people  to  expend  less  effort  when  working 
collectively  is  reduced or  eliminated  when individual  outputs  can be evaluated 
collectively; when one is working on tasks perceived as meaningful and engaging; 
when a group-level comparison standard exists; when working with friends or in 
groups one highly values; and when inputs to the collective outcome are (or are 
perceived as being) indispensable (Karau & Williams 1993; Kerr & Brunn 1983). 
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That is without doubt the case with FreeBSD: high levels of individual motivation 
are  sustained thanks  to the psychological  frame of  developers.  In line with the 
volunteer character of participation in FOSS projects, the ability to self-select the 
tasks one is going to work on (according to one's own interests) ensures that tasks  
are perceived as meaningful and engaging. Furthermore, a common motivation for 
contributing to a FOSS project is the value placed on being part of the hacker (i.e. 
FOSS) community. In addition to furthering a sense of community and belonging, 
the adoption of the hacker identity functions as a motivation for action: the surest  
way to share in this cultural identity is by affiliating oneself with a FOSS project. As 
Linus Torvalds (1998) says, 'the act of making Linux freely available wasn't some 
agonizing decision that I took from thinking long and hard on it: it was a natural 
decision within the community that  I  felt  I  wanted to be a  part  of'.  For  FOSS  
developers, therefore, launching a project or joining an existing one constitutes a 
core part of what defines them as individuals. Although it is not without reason 
that the work ethic of FOSS developers has been frequently portrayed as highly 
individualistic (e.g. Shah 2005, p. 12), this description fails to grasp a fundamental 
element of shared belief within the hacker community: engaging in cooperative 
relationships with other hackers is not a constraint upon one's freedom of action, 
but an enabler for the full  development of  one's  potentialities.162 As one of  the 
Apache Project founders puts it, 'we collaborate on producing and supporting the 
Apache server out of enlightened self-interest: by pooling our efforts, the resulting 
product is much more functional and robust than anything we could have produced 
alone'  (Fielding 1999, p.  42).   That  is  what FreeBSD core team member Robert 
Watson (2006)  alludes  to  when he says  that  'FreeBSD developers  are  generally 
characterised by independence [and] a good sense of cooperation'. The fact that in 
the  development  of  a  hacker  project  (a) tasks  are  perceived  as  inherently 
meaningful  and  interesting  and  (b) collaboration  is  intrinsically  motivated  as 
participation  is  valued  in-itself  for  reasons  of  cultural  identity,  ensures  that 
increasing group size does not result in diminishing individual motivation.  

As  far  as  the  potential  for  performance  measurement is concerned,  though 
conventional yardsticks of labour productivity are shunned,163 FOSS projects are not 

162As Steven Weber (2004, p. 145) explains, 'personal efficacy not only benefits from, but positively 
requires, a set  of cooperative relationships with others.  The popular image of an open source 
hacker as a lone ranger emphasizes the self-reliant attitude that is certainly present but misses the 
deep way in which that self-reliance is known to be made possible through its embedding in a 
community. The belief is that the community empowers the individual to help himself'. 

163Whereas  labour  productivity  is  typically  measured  in  relation  to  labour  time  expended  (i.e.  
number of working hours) or money-wages advanced (in which a definite number of working 
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destitute of ways by which to evaluate the extent of the contribution of any given 
individual committer. First of all, the openness and free availability of source code 
makes it possible for anyone interested to study it and hence evaluate the quality of 
the work of its author(s). Likewise, in projects giving free (read-)access to their code 
repositories (e.g. CVS and Subversion in the case of FreeBSD), this can be done by 
looking at logs of activity traces: one can identify the committers responsible for 
any piece of code checked into the repository and so evaluate their contribution to 
the collective output. In the spirit of fostering friendly rivalry between committers,  
FreeBSD  also  keeps  a  record  of  the  number  of  changes  every  committer  has 
checked  in.164 The  performance  of  the  group  as  a  whole  is  also  amenable  to 
evaluation,  as  a  group-level  comparison exists  in the form of the other projects 
descended from the original BSD operating system (i.e. OpenBSD, NetBSD) and the 
Linux kernel project. In much the same way that one can compare the end-user 
functionality  (i.e.  features)  of  these  operating  systems  with  that  provided  by 
FreeBSD, their development status may well serve as a benchmark by which the 
development progress of FreeBSD can be evaluated. Taken together, the ability to 
evaluate (a) individual committers' contributions to the collective outcome (i.e. any 
one release of FreeBSD) and  (b) the performance of the committers'  group as  a 
whole  against  other  FOSS  projects'  group  performance,  serves  to  reinforce  the 
already present high levels of individual motivation.   

The final, though no less important, factor that restrains the manifestation of 
decreasing  returns  to  scale  in  this  production  setting  consists  in  the  radical 
departure of FreeBSD from the pattern of scale expansion inherent in conventional 
organisations.  A  cause  of  decreasing  returns  to  scale  as  prominent  as  reduced 
individual motivation springs from the communication distortions attendant upon 
expansions of the scale of production. As Williamson (1967, 1985) elucidates (see 
chapter 1), this problem is inherent in that form of expansion of scale, universally 
characteristic of hierarchical organisations, according to which the span of control 
principle must be strictly adhered to. Because an extra manager must be installed 

hours are crystallised), that is by no means possible in the realm of FOSS development where 
participants  are  volunteers  who  contribute  in  their  free  time.  The  fact  that  they  receive  no  
remuneration for their contributions, and there is no record of the time they dedicate, dictates an  
alternative method for the measurement of productivity. For an extensive discussion of alternative 
methodological approaches to the analysis of economic activity in FOSS projects, see section 
Measuring labour productivity in chapter 3 and Ghosh (2003).

164The  so-called  activity  tables  are  accessible  online  at 
<http://people.freebsd.org/~peter/commits.html>.
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for every X number of persons added to the working group,165 attempts to expand 
the scale of operations under this  principle are afflicted by the ills  of  increased 
bureaucracy: the more the successive layers of hierarchy that information has to 
pass through the greater the potential for serial reproduction loss. In consequence, 
information  (such  as  reports)  sent  upward  is  fragmentary  or  erroneous,  while 
information (such as instructions) passed downward becomes exceedingly harder to 
operationalise. The historical growth of the FreeBSD committers' group contrasts 
sharply  with  this  form  of  organisational  expansion.  Not  only  is  maintaining  a 
definite ratio of subordinates per supervisor not a precondition for (nor an after-
effect of) expanding the scale of the project, but this logic of organising is totally 
done away with.  The self-selection of  tasks  by committers  –  the fact  that  they 
define both the process and content of their work – takes the place of hierarchical 
organisation. A hierarchical structure, especially one with many layers, is evidently 
impossible when there is  no distinction between those who make decisions and 
those who execute them. In this respect, FreeBSD represents a radical departure 
from  the  growth  pattern  characteristic  of  organisations  modelled  on  the 
hierarchical separation of decision-makers from decision-executants. The overlap of 
decision making and executive labour in the FreeBSD development process obviates 
the need for a  layered hierarchy – which amounts  to saying that  it  creates  the  
conditions under which the span of control principle can be completely disregarded 
– thereby negating the negative consequences of scale expansion that clinging to 
this principle entails. The only sense in which a discussion of the span of control  
principle is meaningful in the context of FreeBSD is with respect to the learning 
costs attendant upon a growing codebase and the coordination costs involved in 
integrating an increasing stream of code contributions from the periphery of the 
project, that is, from outside contributors without commit rights.166 The growth of 
the (src) committers' group over time can be seen as an adaptation to the increase of 
outside  contributors.  For  it  is  this  influx  of  peripheral  contributors,  largely 
accounted for by the explosive growth of Internet connectivity in the 1990s (Lehey 
2002; Saers 2005),167 that was accommodated by the expansion of the committers' 
group. 

165'If any one manager can deal directly with only a limited number of subordinates, then increasing  
firm size necessarily entails adding hierarchical levels' (Williamson 1985, p. 134). 

166Mateos-Garcia and Steinmueller's (2008, p. 337) study of Debian makes the same point.
167The  massive  diffusion  of  the  Internet  revolutionised  the  scope  of  geographically  distributed 

software development by enabling a far greater number of people than ever before to participate 
in such projects. 
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By considering it in this light, the core team's delegation of authority (in the 
form of  commit  privileges)  to  increasingly more outside contributors  represents 
essentially an attempt to address limitations in the 'span of control'. As committers 
are responsible for integrating the contributions of those without commit rights, 
the  increase  of  outside  contributors  in  the  periphery  of  the  project  made  it 
necessary to bolster the ranks of the committers with more persons. 

Fig. 10.1a: Committers (src) Fig. 10.1b : Peripheral contributors

Fig. 10.2: Number of peripheral contributors per committer

In the same way, the growth of the codebase entailed such learning costs that it 
was no longer possible for the dozen or so168 committers comprising the core team 
to stay on top of development work across all areas of the project. This perspective  
on how the learning costs attendant upon a growing codebase and the coordination 

168The core team had thirteen members in 1993; since 2000 it has nine. 
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costs  involved  in  integrating  an  increasing  stream  of  peripheral  contributions 
trigger changes in the size and composition of the committers' group sheds light on 
the emergence of the FreeBSD governance structure. It suggests that 'strategies for 
integrating  [peripheral]  contributions  play  an  essential  part  in  determining  the 
outcomes  of  a  project'  (Mateos-Garcia  &  Steinmueller  2008,  p.  335)  and that  a 
principle of organisation, seemingly analogous in function to that of the span of  
control  in  hierarchical  organisations,  is  operant,  regulating  the  number  of 
committers in relation to that of contributors without commit rights.

There is however a crucial difference. The span of control principle refers to the 
number of  subordinates  per  supervisor.  In FreeBSD there is  no such thing as  a  
structure of subordination. The core team can suspend committers'  privileges or 
expel  them from the  project,  but  cannot  tell  them what  to  do,  how or  when. 
Similarly, committers may choose not to integrate into the repository what outside 
contributors send them, but that is as far as their authority over them goes.

To  recap,  the  historical  expansion  of  the  FreeBSD  group  of  committers  is 
accompanied by a fall in average group productivity, seemingly confirming Brooks' 
prognosis. However, this decrease in productivity, as our analyses show, is owed to 
the disproportionate increase of low-contribution committers, rather than a fall in 
the  output  of  core  developers.  From  the  perspective  of  core  developers' 
performance,  therefore,  the  FreeBSD  project  manages  to  elude  the  negative 
consequences of increasing group size. The reason for this, however, does not lie in 
the mitigation of coordination costs within the boundaries of the modules but in 
the  finer  division of  labour  that  larger  groups  enable  within  the  modules  they 
develop, thereby allowing their core developers  to more fully concentrate upon 
producing code. In parallel, the potential for decreasing returns to scale is blunted 
by the motivational forces at play in this setting: when one works in a group one 
highly values, as is the case in FreeBSD (and the general rule with FOSS projects), 
performing only such tasks as one's own interests dictate, increasing group size has 
no  longer  a  demotivating  effect.  Similarly,  the  ability  to  evaluate  individual 
contributions  to  the collective  work product  as  well  as  the performance of  the 
group as a whole by comparing it against the activity of groups working on projects 
of  similar  scope  and  functionality,  reinforces  the  motive  to  contribute. 
Furthermore, the pattern of scale expansion encountered in the context of FreeBSD 
development has contributed to averting the manifestation of decreasing returns to 
scale.  In contrast to conventional organisations in which expanding the scale of 
operations presupposes a proportional increase of layers of hierarchy, FreeBSD has 
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so far faced no such constraints: it  has been possible to expand the scale of the 
project  without  necessitating  a  taller  hierarchy.  Flat  hierarchies,  such  as  that 
encountered in FreeBSD, limit the potential for serial reproduction loss, ensuring 
thus that there is no loss in the quality of information communicated among project 
contributors. 

GENERALISABILITY
Across community of FOSS projects
At this point it makes sense to ask whether the conclusions we drew from our study 
of FreeBSD are valid for other FOSS projects. Compared to other FOSS projects, 
FreeBSD differs in several respects:

(1) It  is  a  large  project  with  hundreds  of  contributors,  as  opposed  to  the 
majority  of  FOSS  projects  whose  development  is  carried  out  by  small 
groups (Krishnamurthy 2002).

(2) It  is  one of  the oldest  and most  mature FOSS projects,  being developed 
since 1993. Its longevity implies that the pattern of group interactions has 
crystallised into an organisational structure. By contrast, young projects are 
driven by groups that have not yet settled into a definite set of organising 
principles, goals and processes to perform their activities.

So, compared to FreeBSD, FOSS projects that are either small or at an early stage 
of  development  are  arguably  less  likely  to  try  to  use  the  product  structure 
(modularity) as a means of coordination but more open to experimentation with 
alternative organisational configurations.  However, the characteristics common to 
all FOSS projects far exceed in importance their individual differences:

(1) Their  development  is  not  collocated  but  distributed, thriving  on  the 
contributions  of  a  loosely-coupled community of  programmers  scattered 
around the world. 

(2) Their  mode  of  organisation  is  non-hierarchical.  Participation  is  open, 
volunteer and based on the self-selection of tasks, as participants choose 
tasks to perform in accordance with their own desires. 

(3) The  hacker  ethic  constitutes  the  common normative  standard  for  FOSS 
developers. 
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In consequence of the geographical diaspora of their developers and their non-
hierarchical  mode  of  organisation,  FOSS  projects,  regardless  of  their  scale  or 
maturity, are receptive to the idea of using the product structure as a means of 
coordination.  But of course, the need to do so becomes acutely felt and pressing 
only when the scale of the project is expanding. With that caveat in mind, the case  
of  FreeBSD  is  representative  of  the  function  of  modularity  in  FOSS  projects 
undergoing an expansion of scale. It is also very unlikely that FreeBSD is an outlier 
with respect to the effect of increased scale on project governance. To the extent 
that the hacker ethic constitutes the normative standard to which the conduct of  
FOSS  developers  conforms,  an  increase  of  project  scale  is  unlikely  to  prompt 
changes  in  an  authoritarian  direction,  as  FOSS  developers  are  averse  to  heavy-
handed control  and organisational  configurations  that  seem to  contravene  their 
individual autonomy of action. Equally important, the environment in which FOSS 
projects  operate  does not provide the objective conditions  for  the emergence of 
hierarchy:  a  structure  of  subordination  cannot  develop  in  an  environment 
characterised chiefly by the massive participation of volunteer contributors who (a) 
are geographically dispersed, (b) can easily exit and (c) are not bound by relations of 
economic dependency. Given the commonalities we have just remarked, there are 
legitimate  grounds  to  believe  that  the  results  we  obtained  from  our  study  of 
FreeBSD apply to FOSS projects in general. But is it possible to generalise from the 
case of FreeBSD to draw conclusions that hold in organisations other than FOSS 
projects?

Beyond the realm of FOSS
That  should  only  be  attempted  with  great  caution,  considering  the  distance 
separating FOSS and conventional organisations. In asking whether the results we 
obtained by testing the effect (a) of modularity on group dynamics and (b) of scale 
on  project  governance  in  FreeBSD  are  likely  to  hold  in  other  organisational 
contexts, we are faced with several difficulties, of which the most important is that 
the  form  of  organisation  and  management  of  FOSS  projects  is  fundamentally 
different from that encountered in other work environments. 

As  we  have  seen  in  FreeBSD,  FOSS  project  administrators  do  not  have  the 
authority  to  give  orders  and  tasks  are  not  allocated  through  an  authoritative 
division of labour but self-selected by participants in accordance with their own 
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wishes. The resulting division of labour is spontaneous in the sense that it emerges  
from the choices of the contributors rather than from a central coordinator. It is not 
so in other product development settings. Companies in the commercial software 
industry, for example, typically decouple the high-level task of architectural design 
from the low-level task of code implementation, assigning the former to a central 
designer  and  the  latter  to  a  group  of  programmers  (Brooks  1995).  Such  an 
organisational configuration implies that the modularisation process may only be 
enacted  through a  top-down managerial  intervention and its  implementation is 
centrally  coordinated.  In  such  hierarchical  contexts,  the  application  of  code 
modularity  might  be  geared  to  enhancing  the  control  of  managers  over  their 
subordinates, as has actually been observed (Reinstaller 2007). Modularity in FOSS 
projects,  by contrast,  is  emergent rather than imposed from the top.  It  is  not  a 
decision made by a lead architect or in a command centre cut off from the actual  
site of development, but a mechanism to which project developers are driven by 
their own decision to focus their work on some area of the codebase, as a result of  
the learning costs attendant upon its growth. For much the same reason, we expect  
structural changes such as increasing size to trigger radically different responses in 
hierarchical organisations and FOSS communities. To effect coordination within an 
expanding  group  of  developers,  the  FreeBSD  project  resorted  to  tightening  its 
control  over  the  inputs  and  outputs  of  the  development  process  (through  the 
induction  process  for  new  members  and  the  practice  of  frequent  building, 
respectively). But a hierarchical organisation would arguably be more inclined to 
manage coordination issues attendant upon increasing size much differently:  for 
instance,  by intensifying supervision and central  coordination or by introducing 
additional layers of hierarchy (e.g. Brusoni & Prencipe 2006; Staudenmayer et al. 
2005).

At the same time, we should not overlook the importance of some factors: 

(1) The  phenomenon of  distributed  product  development  is  not  limited  to 
FOSS  projects:  the drive to distribute production  requirements across the 
network pervades all industries. 

(2) Nor is the model of  open/user innovation  (Chesbrough 2003; von Hippel 
2005) confined to FOSS: increasingly more organisations try to tap into the 
creative potential of actors outside their boundaries and involve them in 
the  product  development  process.  FOSS development  is  but  an extreme 
example of such  innovation.
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(3) Increasingly more organisations experiment with self-managing teams and 
regimes  of  peer  control  (Barley  1993;  Sewell  1998),  empowering  their 
employees to participate in the managerial process.  

Distributed  work  organisations  characterised  by  horizontal  control  processes 
and  extensive  participation  of  external  actors  look  very  much  similar  to  the 
organisational  configuration  exemplified  by  FOSS  projects.  It  is  quite  likely 
therefore that such organisations will manifest a similar response to increased scale 
as FreeBSD and look upon product structure as a variable that can be manipulated 
to better support distributed development. 

The epilogue which follows reflects on the effect of expanding organisational 
size on organisational structure, collating the results of  our study against a long 
tradition in the social sciences, according to which the separation of order-givers 
from order-takers is the inevitable concomitant of increasing size. 
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EPILOGUE

Social scientists have for a long time laboured under the assumption that as a group 
grows larger, it becomes less able to self-organise. This view has been so influential  
that it has left an indelible mark on the social sciences. A few examples will suffice 
to demonstrate this point. In what has come to be regarded as the founding tract of  
crowd theory, Gustave Le Bon's The Crowd, first published in 1895, the 'crowd' is 
portrayed as mentally retarded and destitute of the faculty of judgement. For Le 
Bon, the crowd, no matter how competent or intelligent in their own right are the 
individuals who comprise it, is incapable of displaying even the slightest common 
sense:  as  he  exclaims,  'in  crowds,  it  is  stupidity  and  not  mother-wit  that  is 
accumulated'  (Le  Bon  2002,  p.  6).  That  is  so,  Le  Bon  contends,  because  the 
behaviour of individuals, once they are part of a crowd, becomes totally dominated 
by its 'collective mind'. And this collective mind, on account of its 'infantile state', 
needs  a  strong  leader  to  guide  it.  In  consequence  of  the  psychological 
transformation  that  individuals  undergo  in  groups,  crowds  are  susceptible  to 
demagoguery. Le Bon's message was clear: the notion of groups without leaders is  
chimerical. His vitriolic statements left no room for any other interpretation: 'The 
crowd demands a god before anything else' (Ibid., p. 40); 'a crowd is a hostile flock 
that is incapable of ever doing without a master' (Ibid., p. 72); 'it is the need not of 
liberty but of servitude that is always predominant in the soul of crowds' (Ibid., p. 
75).  Le  Bon's  provocative  views  were  reprised  in  later  seminal  works. 
Characteristically, in his 1921 venture into the field of crowd psychology, Sigmund 
Freud  dismissed  as  erroneous  the  notion  that  crowds,  be  they  transient  group 
formations or stable associations, can exist without leaders: 'man is...a horde animal, 
an individual creature in a horde led by a chief' (Freud 1975, p. 68). 169 According to 
Freud,  what  unites  individuals  in  groups  is  not  so  much their  affinity  as  their 
emotional tie with the leader.  It  is  the tie with the leader,  rather than the ties 
between themselves, that is the ruling factor. 

In the ninety years that elapsed since Freud's diatribe, it is true, classic crowd 
theorists have been castigated for masquerading their own anti-democratic views as 
the results of scientific inquiry. Nevertheless, the notion that crowds are unfit to 

169Freud's critique was levelled against Wilfred Trotter's (1916) argument that the role of leaders in 
groups had been unduly overemphasised.   
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govern themselves has proven to be remarkably persistent.170 In the few instances 
in the literature where mention is made of leaderless and anti-hierarchical groups, 
it is always in the shape of an exceptional case that has little bearing on the subject 
at  hand.  Thus  Elias  Canetti,  in  his  monumental  study  of  crowds,  praises  the 
spontaneity, responsibility and dignity evinced in the bottom-up organisation of 
worker-occupied  factories,  underlining  however  that  such  structures  have  a 
characteristic shortness of life, being unsuitable for organisation on a stable basis 
(Canetti 1984, pp. 56-58).171 

The thesis that an increase of scale in numbers undermines a group's ability to 
self-organise and self-govern penetrated academic sociology through the work of 
Max Weber. According to Weber, direct-democratic forms of administration are 
possible only in circumstances where (a) group members can gather together in a 
single spot and (b) administrative tasks can be carried out by any group member:

In addition to the small scale of the group in numbers or 
territorial  extent,  or  still  better  in  both,  as  essential 
conditions  of  immediate  democracy,  is  the  absence  of 
qualitative  functions  which  can  only  be  adequately 
handled by professional specialists (Weber 1947, p. 413). 

More specifically, the ability of a group to dispense with leaders collapses when

the  group  grows  beyond  a  certain  size  or  where  the 
administrative  function  becomes  too  difficult  to  be 
satisfactorily taken care of by anyone whom rotation, the 
lot, or election may happen to designate. The conditions 
of  administration  of  mass  structures  are  radically 
different from those obtaining in small associations...The 
growing complexity of the administrative tasks and the 
sheer expansion of their scope increasingly result in the 

170For a recent literature review, see Mazzarella (2010). 
171The  most  notable  exception  to  this  general  trend  is  Hardt  and  Negri's  (2000,  2004) 

conceptualisation of the multitude as inherently opposed to intermediation and representation. Yet, 
even they feel compelled to draw a distinction between their use of the concept of the multitude  
and that of the crowd (perhaps in order to distance their work from the field of crowd theory), 
contending that the crowd 'is fundamentally passive in the sense that it needs to be led and cannot  
act of its own accord, autonomously',  whereas 'the multitude, in contrast, must be...capable of 
acting autonomous' (Hardt 2006).  
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technical superiority of those who have had training and 
experience, and will thus inevitably favor the continuity 
of at least some of the functionaries. Hence...the rise of a 
special,  perennial  structure for administrative purposes, 
which of necessity means for the exercise of rule (Weber 
1978, pp. 951-952). 

As large scale militates in favour of centralised administration and the necessity 
of specialisation to fulfil specific administrative tasks creates a stratum of experts  
who, by gradually appropriating their functions, come to concentrate in their hands 
all  actual  power,  Weber  concluded that  this  process  eventuates  in  bureaucratic 
administration.  Robert  Michels'  well-known study  of  socialist  parties  and trade 
unions in pre-World War I Europe made this point even more forcefully. Michels 
argued that large-scale 'organization implies the tendency to oligarchy'. As a result, 
'every party or professional union becomes divided into a minority of directors and 
a majority of directed' (Michels 1915, p. 32). Michels' argument rested on the same 
points raised by Weber: 'the technical specialization that inevitably results from all 
extensive organization renders necessary what is called expert leadership' (Ibid., p. 
31).  The necessity of  large-scale  organisation then,  according to  Michels,  forces  
even  those  political  organisations  that  aspire  to  egalitarian  ideals  to  adopt 
bureaucratic structures. Their large size makes them dependent upon professional 
specialists for all sorts of administrative tasks and so power passes from the rank and 
file to the experts who run the organisation. Thirty five years later, Philip Selznick's 
study  of  the  Tennessee  Valley  Authority  reiterated  Michel's  conclusions.  By 
focusing  on  an  organisation  known  for  its  commitment  to  democratic  ideals, 
Selznick's  study sought to emphasise that the end-product of increased size and 
administrative complexity in organisations, 'whether formally democratic or not...is 
a  split  between  the  leader  and  the  led,  between  the  agent  and  the  initiator' 
(Selznick 1949,  p.  9).  Although theories  explaining  the  organisational  split  of  a 
group into a class that commands and another that obeys as a 'constraint' imposed 
by the administrative requisites of large scale organisation have been criticised as 
unwarrantably  pessimistic  and  fatalistic  (e.g.  Gouldner  1955),  the  tendency  of 
modern theorists of group organisation to insist that expanding organisational size 
leads by necessity to centralised authority is as alive today as ever. According to 
social  anthropologist  Robin  Dunbar  (1993),  for  instance,  a  group's  ability  to 
dispense with hierarchy depends on its size. If it numbers less than 150 members, 
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group  activities  may  well  be  coordinated  informally,  based  on  the  mutual 
adjustment of  participants.  But once it  exceeds  150 members,  its  ability to self-
organise without formal rules  wanes.  After crossing this  threshold,  coordination 
can only be achieved by the erection of formal hierarchical structures.

Against  the  backdrop  of  the  foregoing  discussion,  our  findings  seem  quite 
unnatural. One would expect that a project like FreeBSD, whose (src) developer 
base  has  increased more than tenfold  from 16 to  198 members  in  the  space of  
thirteen years, would have resorted to some type of hierarchical arrangement to 
combat  the increased  coordination costs  attendant  upon the expansion of  scale.  
However, the expansion of the FreeBSD committers group, though it increased the 
need for active coordination, did not result in its social stratification, that is, to an 
internal  hierarchy  where  contributions  are  processed  upstream  through 
gatekeepers.  The structure of organisation of daily work with respect  to change 
integration remained much the same. How is that possible? Here we might return 
to  our  discussion  of  modularity  by  reformulating  the  question  in  terms  of 
modularity theory:  does  modular  product  design make hierarchical  organisation 
unnecessary by mitigating the need for active coordination within the committers  
group?  As  we  saw,  the  historical  increase  of  scale  in  numbers  of  participating 
committers is accompanied by higher levels of component modularity. To a certain 
extent, the tendency of FreeBSD modules to become less tightly coupled over time 
has  helped  to  moderate  the  need  for  active  coordination  between  groups  of 
committers  who  focus  on  distinct  modules,  thus  enabling  them  to  work 
independently  of  one  another.  However,  product  modularity  cannot  by  itself 
account  for  the eschewal of  hierarchical  coordination.  An interpretation of  this  
outcome  that  rests  solely  on  the  moderating  effect  of  product  modularity  on 
coordination  costs  is,  in  Weberian  terms,  not  'casually  adequate'.172 Modularity 
would furnish such a casually adequate explanation for the mode of organisation of 
committers if it could be shown empirically that the adoption of a modular product 
design is a sufficient condition for the forestalling of hierarchical coordination. But 
this is not possible: modular product development does not preclude hierarchical 
organisation. Quite the contrary, the development of a modular product may very 
well be organised in a hierarchical fashion, as shown by a plethora of studies which  
document the development of modular products inside conventional organisations. 
In the software industry in particular where modularity has been established as the 

172'Causal  explanation depends on being able to determine that  there  is  a  probability,  which...is  
always  in  some sense  calculable,  that  a  given  observable  event  (overt  or  subjective)  will  be 
followed or accompanied by another event' (Weber 1978, pp. 11-12).
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dominant design principle, one would have to look very hard to find a company 
that does not lay emphasis on modular product design. The problem then with an 
interpretation that holds product modularity to be the ruling factor for the non-
hierarchical  organisation  of  FreeBSD  committers  is  obvious:  modular  product 
development can be shown to be equally compatible with hierarchical structures of 
organisation and non-hierarchical ones.173 Modular product design might be a key 
enabler for the mode of organisation of committers but is certainly not sufficient in 
itself to bring it about. 

What throws light not only on the mode of work organisation in FreeBSD but 
more generally on the mode of project governance is the normative principle of 
individual  autonomy  of  action.  Hackers  are  driven  by  an  acute  sense  of 
independence:  they  do  not  like  taking  orders  by  others.  It  is  telling  that 
programmers have a notorious reputation in the software industry for disobeying 
their project managers and defying their authority. In the words of a manager: 

The technologists more closely identified with the digital 
computer  have  been  the  most  arrogant  in  their  wilful 
disregard  of  the  nature  of  the  manager’s  job.  These 
technicians  have clothed themselves  in the garb of the 
arcane wherever they could do so, thus alienating those 
whom they would serve (quoted in Ensemenger & Aspray 
2000; see also Barley 1996, pp. 429-434).

Hackers' disdain for bureaucratic authority is nowhere more pronounced than 
in  the  realm  of  hacker  projects.  That  is  only  logically  consistent,  of  course, 
considering that hacker projects are explicitly set up as anti-bureaucratic spaces of 
collaboration. Their raison d'être is not only to produce software but to exemplify 
the common conviction of  hackers  that  software development can be organised 
without  the  hierarchical  controls  inherent  in  bureaucratic  organisations.  In 
rejecting bureaucratic hierarchies, hackers attune their actions to a value system 
which  is  as  old  as  hacker  culture  itself  and which  exalts  the  autonomy of  the 
individual as a cardinal value. This moral tradition is better-known as the hacker 
ethic and emphasises individual autonomy and self-determination as the principles 
by which the conduct of hackers should abide (Himanen 2001; Levy 1984; Turner 

173As it has been remarked, the introduction of product modularity in some companies is aimed at 
enhancing the control of managers over their subordinates (Reinstaller 2006, 2007). 
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2006).  From the perspective of hacker morality,  forms of collective organisation 
which  contravene  the  autonomy  and  self-determination  of  the  individual  are 
abhorrent and harmful. In consequence of this normative standard, hackers tend to 
adopt structures which are reckoned to maximise their individual autonomy. As 
Thomas Paine (1791) has said, 'forms grow out of principles and operate to continue 
the  principles  they  grow  from'.  That  is  certainly  true  of  FreeBSD:  stripping 
committers of the right to commit changes directly to the codebase would have 
amounted  to  the  delegitimisation  of  the  FreeBSD  governance  system.  It  is  the 
subjective reason why FreeBSD committers did not opt for a hierarchical solution 
to the problem of increased coordination costs, but instead resorted to standardising 
(a) the induction process for new committers and (b) outputs via frequent building. 
In order to manage increased scale, instead of resorting to direct supervision as a 
means of coordination, FreeBSD tried to reduce the need for active coordination 
within the committers group. To achieve this, the project (a) focused on building 
into the committers-to-be the work programs as well as the bases of coordination 
and  (b) established a performance standard for the code checked in by committers. 
This line of development cannot be understood apart from the normative principle 
of  individual  autonomy of  action.  The  significance  that  committers  attribute  to 
their autonomy elucidates the course of action that was taken to manage increased 
scale as their conscious choice. 

By  elucidating  the  intervening  motivational  link  between  the  conduct  of 
committers and the observed outcome, the above interpretation is suggestive of the 
level of control that committers, by reflexively regulating the overall conditions of 
reproduction of  the FreeBSD social  system,  are  characteristically able to  sustain 
over their conduct. However, it can be reformulated so as to engage more critically 
with Weber's analysis. It will be remembered that for Weber – and even more so 
for some of his students like Michels and Selznick – the separation of the directors 
from  the  executants  is  essentially  an  organisational  constraint  triggered  by 
increased size and complexity of administrative functions; the outcome of organic 
necessity  regardless  of  the  feelings  of  organisational  members.  The  objective 
conditions  that  Weber  considered  necessary  for  the  functioning  of  a  direct-
democratic form of governance in a group are, on the one hand, the small size of 
the  group,  and  the  absence  of  administrative  functions  whose  fulfilment 
necessitates  specialisation,  on  the  other.  In  order  that  decisions  can  be  made 
collectively, the size of the group must be small enough so that group members can 
assemble in a single spot. But in FreeBSD, as mailing lists are the project's main 
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communication fora, there is no need for project members to be physically present 
in one place. The project's 'general assembly' is in a sense convoked whenever a 
committer posts  a message to one of the project's  mailing lists.  Thus,  purposive 
discussion  is  distributed  across  space:  a  message  posted  by  a  committer  from 
America may generate replies from committers logging on to the Internet from as 
many as thirty-four different countries. Equally important is that online discussions 
are  distributed  across  time:  not  everyone  has  to  participate  at  the  same  time. 
Mailing lists permit asynchronous communication, thereby imparting flexibility to 
group decision making, as committers can participate in their own time frame. It is  
on  account  of  this  flexibility  that  a  characteristic  problem  of  collectivist  
organisations – interminable meetings – is overcome in FreeBSD.   

As  far  as  the  role  of  administrative  expertise  in  FreeBSD is  concerned,  the 
project  has  tried  to  ensure  that  administrative  tasks  can  be  handled  by  any 
committer. To become a core team member, one has to be a committer first. Thus it 
is  made  clear  that  project  administrators  must  be  thoroughly  involved  in  code 
development;  it  is  not  required  of  them  to  be  management  experts.  The 
administrative tasks they are called upon to fulfil – managing commit rights and 
mediating in developer conflicts that are not self-revolving – are obviously not of 
the  type  which  calls  for  such  specialised  skills  as,  for  instance,  a  professional 
accountant possesses. On the contrary, those administrative functions are reckoned 
to be in the ability of every committer to discharge. However, though it admits no 
management specialists into its ranks, FreeBSD itself is an organisation of experts; it 
is made up of highly skilled programmers. As one of them says: 'By and large, most 
of the committers are better programmers than the people I interview and hire in 
Silicon Valley' (quoted in Jørgensen 2001). A long tradition in the social sciences 
has  it  that  experts  are  an  instrument  of  bureaucratic  domination.  According  to 
Weber, for example, bureaucracy is nothing but 'expert officialdom' (Weber 1994): 
a mode of organisation of experts characterised by their circumscribed sphere of 
activity and their subordination to an impersonal hierarchical order. For Foucault 
(1975),  likewise,  the spread of  'disciplinary institutions'  – encompassing modern 
schools, hospitals, prisons, barracks and factories – from the 18th century onwards is 
inseparable from the emergence of a new type of administrative authority exercised 
through experts  such  as  teachers,  doctors,  social  workers  or  business  managers.  
However,  as  works  in  organisation  theory  have  shown,  the  mode  of  work 
organisation of experts may well be anti-bureaucratic. Indicatively, Mintzberg and 
McHugh's study of the National Film Board of Canada remarked that 'the obsession 
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with control found in...bureaucracy is anathema to the exercise of expertise' as it  
contravenes  the  organisational  flexibility  required  for  the  performance  of  non-
routine tasks (Mintzberg & McHugh 1985, p. 192). Unfamiliar problems require not 
only  the  extensive  involvement  of  experts,  but  also  a  considerable  degree  of 
flexibility  in  dealing  with  them,  which  bureaucratic  structures  –  catering  for 
control, not flexibility – cannot provide. That is why 'conventional administration', 
as Mintzberg and McHugh write, 'is so fruitless in an organization of experts'. Their 
work demands 'structures [which] are designed largely to leave these people free to 
work as they know how'. Such structures are often referred to in the literature as 
adhocracies  (Mintzberg  &  McHugh  1985) or  organised  anarchies (Cohen  et  al. 
1972).  FOSS projects could indeed be seen as examples of organised anarchies or 
adhocracies.  Hackers'  rejection  of  supervisory  hierarchy  is  analogous  to  the 
autonomy from managerial  control  other  professionals  enjoy by  virtue of  being 
expected to exercise judgement and discretion in the  course of performing their 
daily work.  But while  professionals  working in organisations,  even in the most  
'adhocratic' ones, are invariably subject to some measure of bureaucratic control 
(Bendor et al. 2001, p. 173), hackers have completely ousted bureaucratic authority 
from  their  organisational  frame.  The  way  the  Internet  was  developed  by  the 
original 'Internet tribe' – a globally dispersed network of parsimoniously linked, 
self-regulating groups of  computer hackers  – became a template for  articulating 
authority  on  the  development  process  of  FOSS  projects.  In  the  making  of  the 
Internet, as Internet researcher Mathieu O'Neil writes,  

Quasi-scientific  expertise  became  independent  from 
hierarchical  institutions:  hackers  recognised  the 
judgement only of their peers. The authority of experts is 
traditionally  subordinated  to  the  authority  of  leaders. 
However  when  the  Internet  was  developed  learned 
authority to  a  great  extent  determined  administrative  
authority for  the  simple  reason  that  only  computer 
hackers knew how to run the systems (O'Neil 2009, p. 2). 

As hackers were in position to understand the problems – both technological 
and organisational  –  that  the  development  of  the  Internet  entailed  better  than 
anyone else, they became the 'experts' entrusted not only with the development of 
the technological infrastructure but also with the management of the enterprise. 
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Hackers formed, as it  were, a network of autonomous expertise: in building the 
Internet, they evolved new models and procedures for the production, evaluation 
and  dissemination  of  information  and  software  independently  of  state  and 
corporate  authorities.  The  story  of  the  development  of  the  Internet  illustrates 
clearly that expert labour can be harnessed in organisational models quite different 
from those Weber considered germane to professional work. The same applies to 
the case of FreeBSD. In fact, FreeBSD demonstrates even more succinctly that there 
is no 'iron law of oligarchy' set in motion by increased scale. While Weber held 
that the setting up of bureaucratic hierarchy is the inevitable outcome of expanding 
organisational size, that is not what happened in FreeBSD. We must free ourselves 
from the view that one can deduce the organisational configuration of a group, as a 
historically necessary development, from such structural changes as increased size. 
As FreeBSD shows, the conditions governing the emergence and development of 
hierarchy in a group are not independent of the values held by its members. There 
is  nothing  in the  nature of  our  data  that  lends  credence  to  such a  mechanical 
conformity to  the organisational  exigencies  of  increased  scale  as  posited by  the 
Weberian school. Though the expansion of scale catalysed some changes in project 
governance, those were not in the direction that Weber would have anticipated. In 
order  to  cope  with  increased  scale,  instead  of  attempting  to  control  the  work 
process  of  individual  committers,  FreeBSD  sought  to  control  its  inputs  –  by 
specifying the kind of training required to perform the work – and outputs – by 
specifying a  performance standard for the code checked in by committers. Such an 
organisational response is of course not entirely original: control of the inputs to a  
process or of its outputs is an organisational device commonly employed when the 
content of the process itself does not admit of control (Coleman 1993; Mintzberg 
1993; Simon  2002). In this respect, FreeBSD is not unique. Rather, its  analytical 
significance lies in demonstrating that  the organisational devices employed by a 
group are contingent upon the mode of orientation of social action in the group. It 
is to the hacker ethic that we may trace not only the qualities which distinguish the 
(attitudes underlying the) orientation of social action in FOSS projects from that 
obtaining in bureaucratic  organisations but also  the subjective conditions which 
determine the organisational  devices  employed by FOSS projects  in response to 
increased scale. 

Hackers do not consider themselves to be workers but autonomous creators who 
find the impulse for what they do in the joy it gives them. For them, programming 
is an end in itself. Their participation in FOSS projects can be more aptly described 
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as a labour of love or hobby than as work. As Linus Torvalds (2001, p. xvii) says, the 
reason that 'hackers do something is that they find it to be very interesting, and 
they  like  to  share  this  interesting  thing  with  others...Hackers  [are]  working 
together  because  they  enjoy  what  they  do'.  Torvalds'  account  of  what  makes 
hackers  tick  encapsulates  a  unified  view  of  ethics,  which  exalts  the  joy  and 
autonomy inherent in intrinsically-motivated activities as well as the practice of 
free sharing of software that lays at the heart of the hacker community. This moral 
code, as aforementioned, is known as the hacker ethic. It is no coincidence that it is 
expounded by those who study it as the direct antithesis of bureaucratic authority  
and the protestant work ethic (i.e. the value system which, according to Weber's 
famous  thesis,  was  a  catalyst  for  the  rapid  development  of  modern  capitalist 
activity). For Himanen (2001), for example, the protestant ethic's main feature – the 
disciplined obligation of work as a duty – contrasts sharply with the hacker ethic's  
celebration of creative activity as an end in itself:  its  eulogy of joy and creative 
spontaneity  is  diametrically  opposed  to  the  protestant  ethic's  emphasis  on  'the 
earning  of  more  and  more  money,  combined  with  the  strict  avoidance  of  all 
spontaneous enjoyment' (Weber 2005, p. 18). For Levy (1984) and Turner (2006), 
similarly,  the  hacker  ethic  was  forged  out  of  hackers'  disdain  for  corporate 
bureaucracies.  Given that the hacker ethic serves as an organising norm for the 
activities  of  hackers,  it  should  not  be  surprising  that  the  organisational  devices 
employed  by  FOSS  projects  differ  so  radically  from  those  that  bureaucratic 
organisations tend to resort to.   

It is to be expected that readers familiar with Michels' and Selznick's studies will 
be sceptical of interpretations that explain organisational outcomes by reference to 
moral factors, regarding them as idealistic and ignorant of the basic conclusion one 
must draw from the work of Michels and Selznick, namely that even organisations 
that  are  strongly  committed  to  egalitarian  ideals  are  forced  to  evolve  into 
bureaucratic hierarchies when they have grown big enough. The fact that this line 
of development contravenes the founding principles of those organisations just goes 
to  show  that  the  moral  values  espoused  by  their  members  have  very  little,  if 
anything, to do with edging them onto that direction; at the very least, it shows  
that  objective  factors  take  precedence  over  subjective  ones.  That  is  no  doubt  a 
crucial  perspective  on  the  dynamics  of  organisational  evolution,  which,  by 
highlighting  the  primacy  of  objective  conditions  in  shaping  organisational 
outcomes, implies that the governance structure of FreeBSD is not the product of 
the ideas animating its members, as our analysis so far seems to suggest. There is 
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more than a grain of truth in this syllogism. Ideas and values do not in themselves  
suffice  to  forestall  the  development  of  hierarchy  in  a  group:  the  objective 
conditions in which the group operates  must  be incompatible  with hierarchical 
organisation  as  well.  That  is  certainly  true  of  FOSS  projects:  the  objective 
environment embedding them does not provide the preconditions required for the 
emergence  of  oligarchy.  Our  analysis  has  already  touched  upon  some  of  the 
objective parameters of the FreeBSD organisational system that obviate the need for 
hierarchical bureaucratisation: (a) there is no need for project members to assemble 
in  a  single  spot  in  order  to  make  decisions,  as  purposive  discussion  occurs  on 
Internet mailing lists and so is distributed across space and time; (b) there are no 
administrative  tasks  in  the  project  that  require  specialised  training;  and  (c)  
modularity  reduces  the  need  for  active  coordination  between  developers  of 
different components. These factors go a long way to explain the radical autonomy 
of FreeBSD developers. But they are not the only ones.  Three equally important 
ones  come readily to  mind:  (d)  FOSS developers  are  not  bound by relations  of 
economic dependency; (e) the composition of FOSS projects is highly dynamic due 
to the mobility of their members, that is, the ease with which they can enter or exit  
them;  and  (f)  FOSS  development  takes  place  in  a  distributed  environment,  as 
developers are dispersed all over the world. Taken together, these characteristics of 
FOSS projects  suggest  that  their  members cannot be managed in the traditional 
sense of the word (see also van Wendel de Joode 2005).  In a sense,  developers'  
autonomy is built into the very parameters of the distributed work environment of 
FOSS projects, being a function of the objective conditions of FOSS development. 
To put it more simply, nobody is in position to take away their autonomy: there is 
no process in FOSS projects that their administrators could latch on in order to 
dominate the other members. Thus, while the subjective conditions underlying the 
specifically non-hierarchical response of FreeBSD to its historical expansion of scale 
can  be  traced  to  the  hacker  ethic,  the  objective  conditions  that  precluded  the 
transformation  of  the  project  in  an  authoritarian  direction  spring  from  the 
incompatibility of the distributed environment in which FreeBSD operates with 
coercive authority.       

To  close  this  study,  a  comment  on  the  cultural  significance  of  FOSS  seems 
fitting. Let it be allowed me to formulate it in the context of Weber's reflections on 
the tension between the demand for technical efficiency and productivity, on the 
one hand, and the human values of spontaneity and autonomy, on the other, that 
manifests itself as a result of the advance of bureaucratisation. For Weber, modern 
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capitalism is by far the most advanced economic system that ever existed in terms 
of the substantive values of efficiency and productivity. But the very rationalisation 
of  social  life  which has  made  it  possible  to  achieve  this  level  of  administrative  
efficiency and labour productivity has consequences that contravene some of the 
most distinctive values of western civilisation such as creativity and autonomy of 
action.  Weber was cognizant of the harrowing possibility that the domination of 
bureaucratic institutions over social life, which he regarded as inescapable, might 
thrust humanity into an 'iron cage':

No one knows who will live in this cage in the future, or 
whether  at  the  end  of  this  tremendous  development 
entirely new prophets will arise, or there will be a great 
rebirth of old ideas and ideals, or, if neither, mechanized 
petrification, embellished with a sort of convulsive self-
importance.  For  of  the  last  stage  of  this  cultural 
development,  it  might  well  be  truly  said:  “Specialists 
without  spirit,  sensualists  without  heart;  this  nullity 
imagines that it has attained a level of civilization never 
before achieved” (Weber 2005, p. 124).

The 'cage' of which Weber speaks is the degeneration of humans to cogs in an 
administrative machine: their transformation into the underlings of an impersonal 
apparatus,  hierarchically  organised,  which  has  in  its  hands  the  management  of 
collective activities. The very working existence of hacker projects like FreeBSD, by 
constituting  autonomous  spaces  where  individual  autonomy  of  action  and  self-
determination are  given free  play,  dispels  to  a  great  extent  such pessimism.  By 
furnishing a concrete example of organisation without coercive authority, perhaps 
the most important contribution of FOSS projects consists in sketching the general 
outlines of a form of collective organisation in which under no circumstances is the 
suppression of individual autonomy of action ever justified.
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SUMMARY

The  central  question  driving  this  PhD  research  is  whether  modularity,  by 
mitigating the need for active coordination between distinct components, increases 
the potential number of contributors to a free/open source software (FOSS) project 
and  has  a  positive  effect  on  their  labour  productivity,  allowing  them  to  work 
independently of each other. 

Chapter  1 situates  the emergence of  the design principle  of  modularity as  a 
response mechanism to the organisational problem of decreasing returns to scale. 

Chapter 2 reviews the literature on modularity as a design principle for complex 
product development, drawing the following hypotheses for subsequent empirical 
testing:

• Product modularity reduces coordination costs in FOSS projects (H1)
• Product  modularity increases  the potential  number  of  contributors  to  a  

FOSS project (H2)
• An increase  of  contributors  to  a  FOSS project  results  in  an increase  of  

modularity (H2R)
• Product modularity has a positive effect on labour productivity in FOSS  

projects (H3)
• An increase  of  contributors  to  a  FOSS project  has  a  negative  effect  on  

labour productivity (H4)

Chapter  3  describes  the  research  methodology:  it  explains  our  indicators  of 
modularity, coordination costs, group size and labour productivity and the manner 
in which we use panel data (a.k.a. longitudinal or time-series data) collected from 
FreeBSD's software repositories to put the hypotheses to the test. In specific, our 
analysis  takes  place  on  two  levels:  we  examine  the  relationship  between 
modularity, coordination costs, group size and productivity (a) at the project-level 
(that  is,  for  the  FreeBSD project  as  a  whole)  through  a  qualitative  analysis  of 
descriptive  statistics  and  (b)  at  the  component-level  (i.e.  at  the  level  of  the 
individual  modules  making  up  the  FreeBSD  operating  system)  through  a 
quantitative  analysis  of  a  dataset  that  includes  thirty  modules  selected  through 
stratified random sampling:  modules  were categorised into three strata based on 
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their scale, as reflected in the number of developers contributing to them (N=387,  
H=3), and ten modules were randomly selected from each stratum. The statistical 
instrument used for the quantitative analysis is random-effects GLS regression.

Chapter 4 introduces the empirical setting – the FreeBSD project – and discusses 
its historical and organisational background.

Chapter 5 examines the extent to which modularity reduces coordination costs 
in FreeBSD (H1)  but  finds  no empirical  support  for  the  hypothesis  that  higher 
levels of modularity correlate with lower levels of coordination costs. 

The first part of chapter 6 examines whether modularity increases the potential 
number of contributors to FreeBSD (H2) and provides strong empirical support to 
the  hypothesis.  The  second  part  of  chapter  6  tests  H2R,  which  reverses  the 
directionality of the effect so that increasing group size is claimed to result in an 
increase of modularity. The statistical tests we performed verify the hypothesised 
effect,  provided that  conditions of  large-scale development (i.e.  committers  >  8) 
apply.  

Chapter 7 examines the effect of modularity on group performance and finds 
that – to the extent that conditions of large-scale development prevail – modularity 
has  a  positive  effect  on  both  average  group  performance  and  core  developers' 
performance. 

Chapter 8 examines the effect of increasing group size on labour productivity. 
Our  analysis  of  descriptive  statistics  shows  that  the  historical  expansion  of  the 
FreeBSD committers'  group  brought  about  a  fall  in  average  group productivity, 
seemingly confirming  H4, but it also resulted in a rise in core developers' output. 
This  finding  is  qualified  by  arguing  that  large  groups  enable  a  more  extensive 
division  of  labour  (on  a  voluntary  basis,  of  course)  within  the  modules  they 
develop, thanks to which core developers can focus on their task of choice, namely 
new code development, thereby suggesting that the fall in group productivity is not 
caused  by  a  fall  in  core  developers'  performance,  but  by  the  disproportionate 
increase of 'lower-contribution' committers over time. In the light of these results, 
H4 cannot be wholly accepted, as the causal mechanism underlying the decrease of 
average productivity differs markedly from that which H4 postulates (i.e. that the 
fall in group productivity is due equally to the low performance of new members 
and the fall in core developers' performance that is caused by the communication 
and coordination costs attendant upon increasing group size). 

Chapter  9 examines  the  transformation  of  governance  to  which  FreeBSD 
resorted  in  order  to  accommodate  itself  to  expanding  scale.  Catalysed  by  the 
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growing criticism of the distribution of authority in the project, the adoption of the  
elective principle  for  the selection of  the FreeBSD administrative  team brought 
about  a  shift  in  the  conception of  leadership  from the  informal  rule  of  a  self-
selected  group  of  veteran  developers  to  the  democratic  authority  of  an  elected 
group that is revocable and bound to formal rules. Since, FreeBSD has evolved a 
collectivist  governance system, based on a direct-democratic,  consensus-oriented 
process of decision making. Furthermore, in keeping with the normative standard 
of individual autonomy of action, FreeBSD did not attempt to manage increased 
scale  by  supervising  developers'  work  process  but  rather  tried  to  achieve 
coordination  through  the  standardisation  of  the  induction  process  for  new 
developers  and  of  outputs  through  frequent  building.  Interestingly,  the 
transformation of FreeBSD's governance structure contrasts sharply with how other 
large FOSS projects have attempted to manage increased scale. Characteristically, to 
facilitate  coordination  in  an  expanding  group  of  developers,  the  Linux  project  
introduced  an  additional  layer  of  managerial  hierarchy,  as  Linus  Torvalds,  the 
project leader, delegated authority to a cadre of subsystem maintainers – the so-
called 'trusted lieutenants' – to filter the contributions of the wider base of Linux 
developers  (Corbet  et  al.  2010,  pp.  15-17;  Moody  2001).  Such  a  hierarchical 
response to increased scale points not only to the presence of important differences 
in the distribution of authority between FOSS projects but also to a strong element 
of trial-and-error experimentation with varying degrees of control over the process 
of  integrating changes  in the project  code repository  (Holck & Jørgensen 2004; 
Weber 2004). 

Chapter 10 sums up the empirical findings and reflects on the role of modularity 
as a governance mechanism. As regards the effect of product structure on group 
dynamics:

(a) Modularity makes  decentralisation  scalable  by  mitigating  the  need  for 
active coordination between distinct modules.

(b) Modularity reinforces the emergent division of labour: enlarging the scale 
of the project militates in favour of committers' specialisation (because of  
the learning costs involved in familiarising oneself with the codebase) to 
which modularity conduces by enabling the independent development of 
distinct product components. 

(c) Modularity has  a positive effect  on average group productivity in large-
scale conditions, for it  allows developers to work independently of each 
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other.  But  in  small-scale  conditions  (i.e.  committers  <  9),  its  effect  is 
insignificant:  this  implies  that  the  potential  of  modularity  can  be  fully 
exploited only in settings in which the need to mitigate the adverse effects 
of increasing scale takes on a pressing character. 

With respect to the effect of group dynamics on product structure:

(a) Product  structure  mirrors  organisational  structure:  the  distributed 
character  of  the  development  process  of  large  FOSS  projects  such  as 
FreeBSD  implies  that  the  scope  for  face-to-face  communications  is 
drastically  narrowed.  Because  of  the  inherent  limitations  on 
communication, therefore,  the product architecture that  evolves is  more 
modular. 

(b) Product structure constitutes a coordination mechanism. As FreeBSD (and 
FOSS projects in general) is devoid of an authority structure by which to 
effect coordination, FOSS developers are induced to use software structure 
as  a  variable  that  can  be  fine-tuned  to  reduce  the  need  for  active 
coordination between product components. 

(c) However, as long as the overall group of developers working on a module 
remains  small  (i.e.  it  does  not  exceed  eight  developers),  adding  more 
developers to the group prompts no changes in the direction of increased 
modularity.  The  product  structure  that  evolves  is  then  non-modular 
because it reflects the work patterns of a tightly-coupled group.

With respect to the effect of group size on labour productivity:

(a) The  high  performance  of  core  developers  is  not  due  to  the  absence  of 
coordination  costs  but  to  the  temporally  increased  scope  of  their 
participation. 

(b) Large groups enable a more extensive division of labour (on a voluntary 
basis) within the modules they develop, thanks to which core developers 
can focus on their task of choice, namely new code development. Hence, 
increasing group size results in boosting core developers' performance.   

(c) Crucially,  the potential for  decreasing returns to scale is  blunted by the 
motivational forces at work: when one is  working on tasks perceived as 
meaningful  and  engaging  as  well  as  in  groups  one  highly  values,  then 
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adding more persons to the group no longer has a demotivating effect. The 
ability to evaluate (a) individual committers' contributions to the collective 
outcome and  (b)  the  performance  of  the  committers'  group  as  a  whole 
against other FOSS projects' group performance also reinforces the motive 
to contribute. Furthermore, the pattern of scale expansion encountered in 
FreeBSD  has  been  equally  important  in  averting  the  manifestation  of 
decreasing returns to scale: as the expansion of scale in FreeBSD was not 
accompanied by a taller hierarchy, it did not result in the communication 
distortions commonly besetting hierarchical structures. 

In the Epilogue, the findings of our study are collated against a long tradition in 
the social sciences which holds that an increase of scale in numbers undermines a 
group's ability to self-organise and self-govern. We challenge this theory by arguing 
that, on the one hand, the conditions governing the emergence and development of 
hierarchy in a group are not independent of the values held by its members and, on 
the other, that the characteristics of the distributed environment in which FOSS 
projects operate render it incompatible with the exercise of coercive authority.  
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SAMENVATTING (SUMMARY IN DUTCH)

De  centrale  vraag  die  ten  grondslag  ligt  aan  dit  promotieonderzoek  is  of 
modulariteit  –  door  het  verminderen  van  een  behoefte  aan actieve  coordinatie 
tussen gescheiden software modules – het potentiële aantal ontwikkelaars die hun 
bijdrage  leveren  aan  een  FOSS  project  vergroot  en  hun  arbeidsproductiviteit 
verhoogt doordat zij onafhankelijk van elkaar kunnen werken. 

Hoofdstuk 1 schetst een beeld van de opkomst van het concept modulariteit als 
ontwerpprincipe,  in  reactie  op  het  organisationele  vraagstuk  van  afnemende 
productiviteit bij toenemende schaalgrootte.  
Hoofdstuk  2  geeft  een  overzicht  van  de  literatuur  over  modulariteit  als 
ontwerpprincipe voor de ontwikkeling van complexe producten. Op basis van deze 
literatuur zijn  de  volgende  hypotheses  opgesteld,  welke worden getoetst  in  het 
empirisch deel van dit onderzoek:

• Productmodulariteit  leidt  tot  een afname in coordinatie kosten in FOSS  
projects (H1)

• Productmodulariteit  leidt  tot  een  toename  in  het  potentiële  aantal  
ontwikkelaars die bijdragen aan een FOSS project (H2)

• Toename in het aantal  ontwikkelaars die bijdragen aan een FOSS project  
resulteert in een toename van de productmodulariteit (H2R)

• Productmodulariteit  heeft  een  positief  effect  op  arbeidsproductiviteit  in  
FOSS projects (H3)

• Toename in het aantal  ontwikkelaars  die bijdragen aan een FOSS project  
heeft een negatief effect op arbeidsproductiviteit (H4)

Hoofdstuk  3  beschrijft  de  onderzoeksmethodologie:  het  geeft  uitleg  over  de 
indicatoren  van  modulariteit,  coordinatie  kosten,  groepsgrootte  en 
arbeidsproductiviteit, die in dit onderzoek worden gebruikt. Hiernaast   beschrijft 
dit  hoofdstuk  de  wijze  waarop  panel  data  (i.e.  longitudinale  of  time-series  data 
afkomstig  van  de  FreeBSD  repositories)  wordt  gebruikt  om  de 
onderzoekshypotheses te testen. In de onderzoeksanalyse onderscheiden wij twee 
niveaus:  We  analyseren  de  relatie  tussen  modulariteit,  coordinatie  kosten, 
groepsgrootte en productiviteit (a) op project-niveau (dwz voor het gehele FreeBSD 
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project) door middel van een kwalitatieve analyse van beschrijvende statistiek en 
(b) op de module-niveau door een kwantitieve analyse van een gestratificeerde a-
selecte steekproef van 30 modules uit het FreeBSD  project. Op basis van  het aantal  
ontwikkelaars dat een bijdrage levert zijn de modules ingedeeld in drie categorien 
van schaalgrootte (klein, midden, groot). Voor  dit onderzoek zijn uit elk van deze 
drie categorieen, op a-selecte wijze,  tien modules geincludeerd in de steekproef. 
Voor de kwantitatieve analyse van de steekproef  data  is   gebruikt  gemaakt van 
random-effects GLS regressie-analyse.

Hoofdstuk 4  gaat in op de historische en organisatorische achtergrond van  het 
FreeBSD project waarop het empirisch deel van dit onderzoek op is gericht. 

Hoofdstuk 5 gaat in op de vraag in hoeverre modulariteit de coordinatie kosten 
vermindert (H1). Dit hoofdstuk concludeert dat deze hypothesis niet kan worden 
geverifieerd. 

Het eerste deel van hoofdstuk 6 richt zich op de vraag of sterkere mate van 
modulariteit  leidt  tot  een toename in het  aantal  ontwikkelaars  dat  een bijdrage 
levert  aan een FOSS project  (H2).  Dit  hoofdstuk concludeert  dat  de  empirische 
bevindingen  deze  hypothese  ondersteunen.  Het  tweede  deel  van  hoofdstuk  6 
beantwoordt de omgekeerde vraag, namelijk of een toename in de groepsgrootte 
van de ontwikkelaars resulteert in een toenemende mate van modulariteit (H2R). 
Dit veronderstelde effect wordt bevestigd door de statische analyses, maar dit geldt 
alleen  voor  modules  die  zijn  gecategoriseerd  als  modules  met  een  grote 
schaalgrootte (i.e. met meer dan acht ontwikkelaars). 

Hoofdstuk 7 gaat in op het effect van modulariteit op de productiviteit van de 
groep, en vind dat – zolang de voorwaarden voor grote schaal ontwikkeling van 
kracht  zijn  –  modulariteit  een  positief  effect  heeft  op  zowel  de  gemiddelde 
productiviteit als op de productiviteit van core-ontwikkelaars. 

Hoofdstuk 8  richt  zich op  het  effect  van toename van het  aantal  betrokken 
ontwikkelaars op arbeidsproductiviteit. Onze analyse toont aan dat de groei van het 
FreeBSD  groep  over  de  jaren  heeft  geleid  tot  een  afname  in  gemiddelde 
arbeidsproductiviteit.  Op  het  eerste  gezicht  lijkt  de  analyse  hiermee  H4  te 
bevestigen.  Echter  de  toename  in  het  aantal  betrokken  ontwikkelaars  is  ook 
gepaard  gegaan  met  een  toenemende  productiviteit  van  de  core-ontwikkelaars. 
Deze bevinding kan worden worden verklaard door  het feit dat grotere groepen 
van ontwikkelaars  het  mogelijk  maken om werkzaamheden binnen een module 
beter te verdelen. Hierdoor kunnen core-ontwikkelaars zich meer toeleggen op hun 
primaire interessegebied, namelijk het programmeren. De afname in productiviteit 
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komt dus niet doordat de core-ontwikkelaars minder produceren, maar doordat het 
aantal  minder  productieve  ontwikkelaars  die  betrokken  zijn  bij  de  module 
toeneemt.  In het  licht  van deze bevindingen kan H4 daarom niet  zonder  meer 
worden  aangenomen  omdat  de  gevonden  verklaring  voor  de  afname  van  de 
gemiddelde  productiviteit  afwijkt  van het  standpunt  dat  is  weergegeven in H4. 
Deze hypothese veronderstelt namelijk dat zowel nieuwe ontwikkelaars als de core-
ontwikkelaars minder productief worden naarmate de groepsgrootte van het aantal 
betrokken ontwikkelaars en door toenemende coordinatie kosten. 

Hoofdstuk 9 reflecteert op de wijze waarop FreeBSD zelf heeft gereageerd op de 
toenemende schaalvergroting door wijzigingen in aansturing en governance door te 
voeren.  Onder invloed van groeiende kritiek op de verdeling en toekenning van 
autoriteit binnen het project werd een gekozen FreeBSD bestuursteam ingesteld. 
Deze  transformatie  heeft  een  verschuiving  teweeggebracht  van  informeel 
leiderschap in handen van een selecte groep veteranen naar een democratischer 
vorm van leiderschap in handen van een gekozen bestuursteam dat is gebonden aan 
formele  regels.  Met  deze  verschuiving  in  leiderschap  heeft  FreeBSD  een 
collectivistisch  governance  model  ontwikkeld  dat  is  gebaseerd  op  een  direct-
democratisch  en  consensus-georienteerd  besluitvormingsproces.  Door  de 
handhaving van de normatieve standaard van individuele autonomie heeft FreeBSD 
met de ontwikkeling van het nieuwe governance model niet  geprobeerd om op 
schaalvergroting te sturen door over de schouders van ontwikkelaars mee te kijken. 
In  plaats  van  hiervan  is  geprobeerd  de  coordinatie  te  verbeteren  door  het 
standardiseren  van  het  inductie  proces  van  nieuwe  ontwikkelaars  en  door  het 
standaardiseren van de output, door regelmatig te compileren. Interessant is dat de 
transformatie van de FreeBSD governance structuur in scherp contrast staat met de 
wijze waarop andere grote FOSS projecten invulling hebben gegeven aan sturing op 
(effecten van) schaalvergroting. Bijvoorbeeld, het Linux project een hierarchische 
managementlaag  geintroduceerd  om  coordinatie  binnen  een  groeiende  groep 
betrokken ontwikkelaars te faciliteren. Hiertoe heeft Linus Torvalds, de leider van 
het Linux project, autoriteit toegekend aan een kader van subsysteem-beheerders – 
de zogenoemde 'trusted  lieutenants'-  om de  bijdragen van de ontwikkelaars   te 
filteren (Corbet et al. 2010, pp. 15-17; Moody 2001). Deze hierarchische benadering 
van sturing op schaalvergroting wijst niet alleen op significante verschillen in de 
distributie  van  autoriteit  tussen  FOSS  projecten,  maar  ook  op  trial-and-error 
experimenteren met varieerende gradaties  van controle  over  het  proces van het 
integreren van wijzingen in de project code repository (Holck & Jørgensen 2004; 
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Weber 2004). 
Hoofdstuk  10  vat  de  emperische  bevindingen  van  dit  onderzoek  samen  en 

reflecteert  op  de  rol  van  modulariteit  binnen  governance  structuren.  De 
belangrijkste bevindingen met betrekking tot de effecten van productstructuur op 
groepsdynamiek zijn de volgende:

(a) Modulariteit  maakt  decentralisatie  schaalbaar  doordat  de  behoefte  aan 
coordinatie tussen gescheiden modules afneemt. 

(b) Modulariteit  versterkt  een  emergente  arbeidsverdeling:  toenemende 
schaalgrootte  van  projecten  werkt  specialisatie  van  ontwikkelaars  in  de 
hand, door de leerkosten die het doorgronden van de  codebase met zich 
meebrengen.  Modulariteit  stimuleert  specialisatie  door  onafhankelijke 
ontwikkeling van gescheiden product componenten. 

(c) Modulariteit heeft ook een positief effect op de gemiddelde productiviteit 
binnen projecten met  grotere  schaalgrootte  (committers  >  8)  omdat  het 
ontwikkelaars in staat stelt om onafhankelijk van elkaar te werken. Echter, 
binnen projecten met een kleinere schaalgrootte (committers < 9), is  dit 
effect van modulariteit niet significant. Dit betekent dat modulariteit alleen 
ten  volle  kan  worden  benut  in  een  context  waar  de  behoefte  aan  het 
afzwakken van negatieve effecten van schaalvergroting urgent is. 

De  belangrijkste  bevindingen  met  betrekking  tot  de  effecten  van 
groepsdynamiek op productstructuur:

(a) De  productstructuur  weerspiegeld  de  organisatiestructuur:  het 
gedecentraliseerde  karakter  van  het  ontwikkelproces  in  grote  FOSS 
projecten – zoals FreeBSD –  impliceert dat mogelijkheden voor face-to-
face communicatie drastisch afnemen.  Deze inherente beperkingen voor 
communicatie zorgen ervoor dat de product structuur een sterker modulair 
karakter ontwikkeld.

(b) De productstructuur vormt een coordinatiemechanisme. Omdat FreeBSD 
(en FOSS projecten in het algemeen) geen coordinerende autoriteit kennen, 
gebruiken  FOSS  developers  de  productstructuur  als  een  variable  die 
gefinetuned  kan  worden,  om  een  behoefte  aan  coordinatie  tussen  de 
product componenten tot een minimum te beperken.

(c) Echter, zolang als de totale groep ontwikkelaars die betrokken zijn bij een 
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module  klein  blijft  (committers  <  9),  leidt  het  toevoegen  van  meer 
ontwikkelaars  aan  de  groep  niet  voor  meer  modulariteit.  De 
productstructuur die eruit voortkomt is  dan niet modulair omdat het de 
manier van werken van een hechte groep weerspiegeld.

De belangrijkste bevindingen met betrekking tot de effecten van groepsgrootte 
op arbeidsproductiviteit:

(a) De hoge productiviteit van core-ontwikkelaars is niet toe te schrijven aan 
lage coordinatie kosten, maar eerder door een tijdsgebonden toename in 
hun participatie in het project. 

(b) Grote  groepen  betrokken  ontwikkelaars  bieden  mogelijkheid  tot  een 
omvangrijker arbeidsverdeling (op vrijwillige basis) binnen de modules die 
ze ontwikkelen. Daardoor kunnen core-ontwikkelaars zich beter focusen 
op de dingen ze leuk vinden, namelijk programmeren. Daarom resulteert 
een toenemende groepsgrootte in een toename van de productiviteit van de 
core-ontwikkelaars.

(c) Door  de  motivatie  van  ontwikkelaars  kunnen  afnemende 
schaalopbrengsten worden opgeheven. Wanneer men werkt aan taken die 
als betekenisvol en boeiend worden ervaren binnen een groep waar men 
zich mee identificeert, dan heeft uitbreiding van deze groep niet langer een 
demotiverend effect.  De zichtbaarheid van individuele bijdragen aan het 
collectieve resultaat en de herkenbaarheid van de groepsprestatie in relatie 
tot  andere  FOSS  projecten  vormen  een  prikkel  om  bij  te  dragen. 
Bovendien, heeft de wijze waarop de governance structuur van FreeBSD 
zich heeft  ontwikkeld  on der  omstandigheden van schaalvergroting een 
belangrijke rol  gespeeld  in het  afwenden van de negatieve  effecten van 
schaalvergroting.  Omdat de toenemende schaalgrootte van FreeBSD niet 
gepaard ging met een toenemend hierarchische organisatie van het project, 
kwamen de communicatie verstoringen die kenmerkend zijn hierarchische 
organisatiesturcturen niet voor. 

In de Epiloog, worden de bevindingen van onze studie vergeleken met een lange 
traditie  in  de  sociale  wetenschappen  welke  voorstaat  dat  schaalvergroting  het 
vermogen van een een groep om zichzelf te  organiseren en besturen ondermijnt. 
Wij   weerleggen  deze  stellingname,  enerzijds  door  te  beargumenteren  dat  de 
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condities die leiden tot de ontwikkeling van hierarchische organisatiestructuren in 
groepen  niet  los  gezien  kunnen  worden  van  de  normen  en  waarden  van  de 
groepsleden.  Anderzijds,  beargumenteren  wij  dat  de  kenmerken  van  de 
gedecentraliseerde  context  waarbinnen  FOSS  projecten  opereren  onverenigbaar 
zijn met een dwingende en directieve invulling van autoriteit binnen hierarchische 
organisatiestructuren.
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APPENDIX I: THE FREEBSD LICENSE

The FreeBSD License, also known as Simplified BSD License, is the variant of the 
original BSD software license174 used by the FreeBSD Project for the distribution of 
its software. Its verbatim text is as follows:

The FreeBSD Copyright175

Copyright 1992-2011 The FreeBSD Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, 
are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this 
list of conditions and the following disclaimer. 

2. Redistributions in binary form must reproduce the above copyright notice, 
this list of conditions and the following disclaimer in the documentation 
and/or other materials provided with the distribution. 

THIS SOFTWARE IS PROVIDED BY THE FREEBSD PROJECT ``AS IS''  AND 
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED 
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 
A  PARTICULAR  PURPOSE  ARE  DISCLAIMED.  IN  NO  EVENT  SHALL  THE 
FREEBSD  PROJECT  OR  CONTRIBUTORS  BE  LIABLE  FOR  ANY  DIRECT, 
INDIRECT,  INCIDENTAL,  SPECIAL,  EXEMPLARY,  OR  CONSEQUENTIAL 
DAMAGES  (INCLUDING,  BUT  NOT  LIMITED  TO,  PROCUREMENT  OF 
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR 
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 
LIABILITY,  WHETHER  IN  CONTRACT,  STRICT  LIABILITY,  OR  TORT 
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF 
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 
SUCH DAMAGE.

174The  text  of  the  original  BSD software  license  (known  also  as  the  4-clause  BSD license)  is 
accessible online at <http://www.xfree86.org/3.3.6/COPYRIGHT2.html#6> 

175Accessible online at <http://www.freebsd.org/copyright/freebsd-license.html>
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The views and conclusions contained in the software and documentation are those 
of the authors and should not be interpreted as representing official policies, either 
expressed or implied, of the FreeBSD Project.
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APPENDIX II: RELEASE RATE (1993-2003)

Version Release date Days since
last release

1.0 1.11.1993 -

1.1 6.5.1994 186

1.1.5 29.6.1994 54

1.1.5.1 5.7.1994 6

2.0 22.11.1994 140

2.0.5 10.7.1995 230

2.1 19.11.1995 132

2.1.5 15.7.1996 239

2.1.6 16.11.1996 124

2.1.6.1 26.11.1996 10

2.1.7 20.2.1997 86

2.2 16.3.1997 24

2.1.7.1 19.3.1997 3

2.2.1 25.4.1997 37

2.2.2 16.5.1997 21

2.2.5 22.8.1997 98

2.2.6 25.3.1998 215

2.2.7 22.7.1998 119

3.0 16.10.1998 86

2.2.8 29.11.1998 44

3.1 15.2.1999 78
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3.2 17.5.1999 91

3.3 17.9.1999 123

3.4 20.12.1999 94

4.0 14.3.2000 85

3.5 24.6.2000 102

4.1 27.7.2000 33

4.1.1 27.9.2000 62

4.2 22.11.2000 55

4.3 20.4.2001 150

4.4 20.9.2001 153

4.5 29.1.2002 131

4.6 15.7.2002 167

4.6.2 15.8.2002 31

4.7 10.10.2002 56

5.0 19.1.2003 101

Source: FreeBSD Project
<http://www.freebsd.org/releases/>
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APPENDIX III: COMMITTERS ADDED AND REMOVED  
PER MONTH (2000-2003)

Month # committers 
added

# committers 
removed

Jan 2003 4 2

Dec 2002 0 1

Nov 2002 1 0

Oct 2002 8 0

Sep 2002 2 3

Aug 2002 6 0

Jul 2002 2 0

Jun 2002 4 2

May 2002 2 1

Apr 2002 8 5

Mar 2002 5 0

Feb 2002 3 1

Jan 2002 0 0

Dec 2001 3 0

Nov 2001 10 2

Oct 2001 3 0

Sep 2001 0 0

Aug 2001 5 2

Jul 2001 5 0

Jun 2001 7 0
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May 2001 1 0

Apr 2001 4 0

Mar 2001 6 0

Feb 2001 2 0

Jan 2001 3 0

Dec 2000 4 0

Nov 2000 7 0

Oct 2000 6 2

Sep 2000 1 0

Aug 2000 3 0

Jul 2000 10 3

Jun 2000 5 0

May 2000 2 0

Apr 2000 1 0

Mar 2000 2 0

Feb 2000 4 0

Jan 2000 4 0

Jan 2000 – Jan 
2003

142 24

Source: FreeBSD Project
<http://www.freebsd.org/cgi/cvsweb.cgi/CVSROOT-src/access>
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APPENDIX IV: CORE DEVELOPERS SURVEY

As our analysis of descriptive statistics in chapter 8 shows, the historical expansion 
of the committers group did not have a negative effect on the performance of core 
developers, as reflected in the number of commits made by the ten most active 
committers per year. This of course implies that either core developers spend more 
time  on  the  project  over  time  or  their  work  is  not  subject  to  such  increased  
coordination  costs  as  Brooks'  Law  suggests.  To  find  out,  we  did  a  survey:  we 
identified the 58 committers that populated the ranks of the top ten committers 
over time and, except for five of them for whom we could not find a valid email 
address, sent them the below email questionnaire, designed to find out whether the 
amount of time they spend on the project increases over time and to what extent  
that is due to non-coding tasks (e.g. time spent on coordinating):

Email Questionnaire

Dear [name of FreeBSD committer],

I  contact  you  in  the  context  of  a  research  project  at  Delft  University  of 
Technology  which  examines  the  organisation  of  FreeBSD  development.  By 
analysing CVS logs from 1994 until 2007, we have identified you as one of the  
58 most prolific committers in that period and would like to ask you (a) whether 
the amount of time you spent on the project increased over the years until 2007 
and (b) if yes, whether that was due to non-coding activities (e.g. time spent on 
coordinating). 

A simple yes or no suffices for our needs; however, should you feel the urge to 
elaborate on your answer, please feel free to do so.

Thank you in advance,
george

The questionnaires were sent from 9 January 2012 until 16 January 2012 and 28 
replies were collected by 26 January 2012, amounting to a 52.8% response rate. 
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Analysis
To  quantify  the  survey  results,  we  classified  the  replies  we  collected  into  five 
categories, which encompass the range of possible answers to the questionnaire:

(1) Yes, time spent on the project increased over time due to non-coding tasks

(2) Yes, time spent on the project increased over time but not due to non-coding tasks

(3) Yes, time spent on the project increased over time but not due to non-coding tasks, 
though these increased as well

(4) No, time spent on the project decreased over time

(5) Varied: activity tends to ebb and flow over time

Results
This classification method gives the following results:176

Answer Replies

(1) Yes, time spent on the project increased over time due to non-
coding tasks

7

(2) Yes, time spent on the project increased over time but not due to 
non-coding tasks

5

(3) Yes, time spent on the project increased over time but not due to 
non-coding tasks, though these increased as well

3

(4) No, time spent on the project decreased over time 7

(5) Varied: activity tends to ebb and flow over time 6

Of the 28 core developers who responded to the survey, 15 said that the time 
they spend on the project has increased over the years; 7 said the opposite; while 6  
maintained that the extent of their participation tends to ebb and flow over time. 
Of the 15 core developers who answered that they spend more time on the project 

176As a  test  of robustness,  we  asked two colleagues to  repeat  this  procedure in  order  to  check 
whether  different  researchers  would  obtain  the  same  results  when  applying  the  above 
classification schema to the survey replies. The results of their classifications were similar to the  
ones we obtained.
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over time, two-thirds claim that this is due – wholly or partly – to increased non-
coding tasks. Of the 13 core developers whose extent of participation manifests a 
tendency to  fluctuate or  decline over  time,  4  remarked that  their peak activity 
periods were/are associated with increased non-coding tasks. Hence, according to 
half  of  the  core  developers  surveyed,  periods  of  peak  activity  are  directly  or 
indirectly related to increased non-coding tasks. 

Collected replies

# Committer Reply Result

1 jkh I effectively left the project (after co-founding it in 1992) in 2002, so 
anything  after  that  period  would  have  been  fairly  minimal.  The 
reason I left was due to joining Apple in 2001. I simply don't have 
time  for  external  projects  with  so  much  to  do  for  my employer 
anymore! :) 

4

2 rgrimes  My time spent on the project was pretty well constant so neither yes 
or  no is  a  proper  answer. However the amount of  my time spent 
coding  vs  coordinating  in  general  increased  as  the  project  moved 
forward.  Do realize  that  I  was  the ``committer''  that  created the 
repository,  and  spear  headed  the  core  team  for  the  projects  first  
years, so my non coding activies where already adnormally high.

4

3 nate Like anything in life, there is no simple answer. As one of the three 
founders, I was very involved in the early years. However, from 2000 
to 2007 my involvement increased and decreased as my interest and 
availability increased and decreased. However, in the latter years, I 
was less and less involved as family and life made it more difficult to 
be as involved as I was in the early days.

5

4 ache a) No, it was slowly decreased. As the time passes I become more and 
more dissatisfied with the quality of inter-project communucations, 
first  of  all  from programmer's  point  of  view and,  in some extent, 
from human's point of view too. Now I treat the start of the project  
as the best time. 

4

5 bde >I  contact  you  in  the  context  of  a  research  project  at  Delft 
>University  of  Technology  which  examines  the  organisation  of 
>FreeBSD development. By analysing CVS logs, we have identified 
>you as one of the 58 most prolific committers over time
 
That was long ago. I  haven't  committed a single thing for over 3 
years, but still spend too much time on this.

4
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> and would like to ask you (a) whether the amount of time you 
>spend  on  the  project  has  increased  over  time  and  (b)  if  yes, 
>whether  that  is  due  to  non-coding  activities  (e.g.  time  spent  on 
>coordinating).

I now try to spend less than 1 hour a day on FreeBSD (takes half an 
hour just to read mail on a quiet day), but sometimes spend 8-20. I  
only manage to always ignore anything related to management and 
most non-techical things.

> A simple yes or no suffices for our needs; however, should you 
>feel the urge to elaborate on your answer, please feel free to do so.

One grows old and should do something different :-). 

6 phk I need to qualify my answer a little bit: If I take your question as of  
my "semi-retirement" point,  the answer is a resounding "YES" and 
"YES". For the period after my "semi-retirement" the answer would 
be "no" and "no". One of the main drivers for my "semi-retirement"  
was that I spent far too much time on non-coding activities, and far 
too much on what you charitably calls "coordinating". So depending 
on what you are trying to find out, you may need to use one or the 
other reply, but it's probably the first you're looking for. 

>By the  way,  which  year  was  the  first  of  your  'semi-retirement'?

I  don't  think  there  was  a  sharp  cut-off  (that's  the  cause  for  the
"semi-"), but 2007 i certainly in my active period. 

1

7 csgr The main time during which I was active on the FreeBSD project was 
during 1993 and 1994, when I was working on my MSc in Computer 
Science at  Rhodes  University,  in Grahamstown, South Africa.  My 
work on the FreeBSD project probably started out of necessity, as I  
was using initially 386BSD and then FreeBSD as the platform for my 
Masters  research  project.  Due  to  instability  issues,  which  I 
encountered, I became involved in initially submitting patches and 
then larger pieces of work. This led to me joining the FreeBSD core 
team  in  1994.  After  I  completed  my  MSc  at  the  end  of  1994, 
unfortunately, as if often the case, my ability to contribute time to 
the FreeBSD project  decreased  due  to  work demands  and lack of 
connectivity,  since  I  no  longer  had  direct  leased  line  Internet 
connectivity.

4

8 markm (a) No
(b) N/A
Work  pressures  and  other  activities  have  placed  a  limit  on  my 
FreeBSD time. 

4
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9 julian from 1993 to 1995 I was just doing FreeBSD work as a hobby but I 
was working professionally on MACH/bsd which was to some extent 
"code compatible" so I was payed to develop code which could be put 
into FreeBSD.. (and I did) e.g. the first scsi system.

from  1996  to  1999  I  was  payed  to  do  development  directly  on 
FreeBSD and netgraph,  divert  sockets  and some other  code  came 
from that period. In 2000/2001 I took a year sabbatical and in that 
time threaded the kernel (created kernel threads)

From 2001 to 2006 I worked USING freebsd but not really doing 
much development. Some fixing of bugs as I found them at work.  
(e.g. in USB). from 2006-2009 I was employed to do some network 
development,  some  of  which  found  its  way  into  the  system.My 
current work does not involve any FreeBSD development though I 
use it. So, generally with the exception of 2000-2001 the amount of 
activity you see from me depends pretty much on my employment.

I started a family in 2002 so free time after that almost completely 
vanished.

5

10 pst a) It increased, then decreased, I was most prolific from 1993-1998, 
then got busy with other work and started sponsoring projects for 
FreeBSD as part of the company I started, so those commits did not 
show up in the logs.

b) non-coding activities 

1

11 brian In answer to (a), I'm afraid it has decreased over time due to other 
commitments - both work and family. I am still very much an in-
depth  user  of  FreeBSD,  but  don't  get  much  time  to  further  it's 
development lately. If and when my time-on-the-project increases, it 
will  be  primarily  coding  activities.  I've  never  been  much  of  a 
manager, sticking always to technical positions at work, so coding is  
my only real forte... 

>....whether, since the first year you committed code, you tended >to 
spend more time on the project over the years until 2007? 

I guess the real answer is that I have a big interest in FreeBSD but 
have difficulty committing time. From 1996 when I first became a 
committer, 'till around 2001 I was most active. From 2001-2005 I was 
quite  inactive  due  to  work  & family  commitments,  and  my time 
doing FreeBSD specific stuff deteriorated. From 2005 'till 2010 things 
picked up due to my working directly with FreeBSD, although my 
activity  didn't  reach  the  levels  they  were  in  my  earlier  years. 
Through 2011 things deteriorated again due to two job changes. I 
still have a big interest in FreeBSD, so I expect my involvement to 

5
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increase again in the future... 

>..were those activity peaks (from 1996 until  2001 and from 2005 
>until  2010)  accompanied  by  increased  non-coding  activities  (i.e. 
>time spent on coordinating)?
 
The first was purely coding. The second was a mixture of coding and 
non-coding as a project lead developer. 

12 dfr Simple answer: No. To elaborate, my involvement with the project 
tends to go in cycles depending on free time, personal interest and 
other factors. 

5

13 hm - yes, the time spent increased over the years (i think it's normal,  
because one realizes that one can "move" things forward)

- no, it was not due to coordinating although coordinating activities 
increased over the years because more people started to help

3

14 jhb For (a) I would say that, yes, my time has increased. I was not really  
active  as  a  committer  until  1999  or  so  and  became  more  active 
through 2000. I have probably maintained approximately the same 
level of activity since the last half of 2000 up through now however. 
(There might have been a spike in terms of commit count in late 
2000 / early 2001, but back then a single logical change was split up 
into many separate commits. My workflow since about 2002 or so  
has changed such that I tend to commit larger logical changes as a 
single commit.)

For (b), I'm not sure entirely what you are asking. I still spend a lot 
of  time  on  FreeBSD  working  on  code,  but  I  also  spend  time 
answering questions on mailing lists, and I have served several terms 
on the governing  body (core@),  as  well  as  worked in the release 
engineering team for several years during that span. I would say that 
the  amount  of  time  I  spend  on  non-coding  activities  probably 
followed a similar pattern to my overall involvement of ramping up 
from 1999 through 2001, but holding relatively steady since then. 

3

15 jasone a) Yes.
b) No, it was due to spending more time coding. 

2

16 imp Yes.

> (b) if yes, whether that was due to non-coding activities (e.g. time 
>spent on coordinating).
 
Yes. As I did more in the project, I got pulled into many disputes that 
weren't just about code... 

1

17 des It has varied over time based on a number of factors. My most active 5
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period was probably 2001-2005, but I've had peaks of varying lengths 
since then as well; I'm currently in an active phase. I was heavily 
involved in non-coding activities during that period, but that was 
only one of several reasons for my increased activity level. 

18 alfred I would say that the amount of time I've spent on the project has  
declined. Some of this is due to coordinating other developers as I 
introduced and mentored a few developers,  but this is  also due to 
other interests outside of FreeBSD such as work and other hobbies. I  
still contribute, but at a much lower less significant rate than in the 
early to mid 2000s. 

>  If  I  may  ask  one  follow-up  question,  was  that  period  of  peak 
>activity (from the early to  mid 2000s) accompanied by increased 
>non-coding activities (i.e. time spent on coordinating)?

Yes, I would say that I did spend more time mentoring and helping
other people bring code into FreeBSD. 

4

19 marcel a) I don't think so, but then again I haven't kept track of what I've 
done. I can easily be mistaken. 

4

20 davidxu a : yes
b : no, it was due to increased the tasks in the project. 

2

21 trhodes Yes on increased workload (a); somewhat on non-coding (b). 1

22 njl I started with a single side project (SCSI CAM target mode driver) 
that  was  relatively  easy  to  get  integrated  into  the  tree.  It  didn't 
involve any changes to the core of the kernel. A committer mentored 
me for this work and explained the rules of the project.

I expanded out from there to fix USB mass storage bugs. This started 
more interaction with developers because the process for handling 
bug reports needed work.

I then moved over to power management and ACPI in 2003 in order 
to fix my laptop. This is when the most commits started happening. I 
wrote some major subsystems (cpufreq driver) that had to integrate 
with  core  APIs.  So  I  had  to  discuss  such  changes  with  other 
developers. Mostly these discussions would be in private or small lists 
to get a general plan. Once a plan was ready to propose, I'd email it 
to the public lists for a critique.

I think the increased time spent on the project was related to the 
scope of projects I  tackled.  As they grew bigger, the need to deal 
with  core  subsystems  and  all  the  developers  they  affect  was  the 
major coordination difficulty. But it wasn't that bad. The harder part 
was answering, getting debugging assistance, and solving problems 
for users on the mailing list. Because of the wide variety of hardware 

3
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out there and the difficulty of debugging by proxy, it was hard to 
solve some issues for them.

23 ru (a): yes
(b): no

2

24 harti the time increase was due to coding directly for FreeBSD and coding 
for FreeBSD-related stuff in the organizations I worked for. I tried to 
reduce non-coding activities as much as possible.

2

25 brooks Off hand, I'd say yes to both questions. I was elected to core in 2006
so that increased time spent on non-coding activities.

1

26 glebius I  started  to  contribite  to  the  project  in  2003,  and  got  committer
status in 2004. For a first couple of years I was very active in CVS.

But later my activity had abated. The reason for that were mostly
due to my personal time management failure and a temporary loss of
motivation. Then in 2007 I became daddy and personal time got even
more limited. During 2007, 2008, 2009 my presence in the project
was small.

The last year I have optimised my personal time management and 
motivation and I am back to spending a lot of time for the project 
and checking in a lot to SVN. I hope that birth of our second child 
would not speed down my committing activity a lot. :)

I have never spent my time on coordinating. Probably because I am 
too far geographically, and I don't travel a lot. Only in 2011 I have 
visited  EuroBSDCon,  and  recently  have  tried  to  make  mini-
conference for local (Russian and Ukrainian) committers. 

5

27 mjacob a) Yes
b) No 

2

28 kmacy (a) Yes.

>(b) if yes, whether that was due to non-coding activities (e.g. time 
>spent on coordinating).

Coordination, but not in the sense of management but in the sense of 
more time spent trying to reach consensus on changes that had more 
far-reaching impact than those localized to device drivers or a less 
used architecture. 

1
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GOVERNANCE STRUCTURES OF FREE/OPEN 
SOURCE SOFTWARE DEVELOPMENT  

Modularity theory makes a compelling argument: modular product design increases the 
potential number of persons that could work on a distributed project and has a positive effect 
on their labour productivity because it allows them to work independently of each other, 
with little or no need for central coordination. This doctoral dissertation sets out to put this 
argument to the test by studying a phenomenon that combines both scale and modularity: 
Free and open source software (FOSS) development. Its central question is: Does modularity 
mitigate the adverse effects of increasing scale in FOSS development? 

In exploring the effect of modularity and increasing scale on the dynamic of development of 
FreeBSD, a large and well-known FOSS project, over a period of fifteen years, the dissertation 
addresses several related empirical issues: How are FOSS projects organised? How are they 
governed? And most interestingly, how do they manage increasing scale? Does their ability 
to self-organise diminish as they grow larger, thereby necessitating hierarchical coordination?

The Next Generation Infrastructures Foundation
represents an international consortium of knowledge institutions, market players  

and governmental bodies, which joined forces to cope with the challenges faced  

by today’s and tomorrow’s infrastructure systems. The consortium cuts across  

infrastructure sectors, across discplinary borders and across national borders,  

as infrastructure systems themselves do. With the strong participation of  

practitioners in a concerted knowledge effort with social and engineering scientists, 

the Foundation seeks to ensure the conditions for utilization of the research results  

by infrastructure policy makers, regulators and the infrastructure industries.

www.nginfra.nl
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